مقاوم سازی با الیاف frp و کاشت میلگرد و انکربولت

کاشت میلگرد در گیلان و مازندران، آب بندی نما و چاله آسانسور ، آب بندی استخر

مقاوم سازی با الیاف frp و کاشت میلگرد و انکربولت

کاشت میلگرد در گیلان و مازندران، آب بندی نما و چاله آسانسور ، آب بندی استخر

مقاوم سازی ، کاشت میلگرد ، اجرای الیاف کربن و شیشه frp cfrp و gfrp


کاشت میلگرد در فونداسیون و نمای ساختمان

مهندس فلاح چای

09120215547

توجه :هزینه انجام خدمات در همه نقاط گیلان ومازندران یکسان است

نویسندگان
طبقه بندی موضوعی
آخرین نظرات

آخرین مطالب

۸۲۴ مطلب در بهمن ۱۳۹۶ ثبت شده است

مقاوم سازی لرز‌ه‌ای اجزای غیرسازه‌ای‌

در بهسازی و مقاوم سازی لرزه‌ای اجزای غیرسازه‌ای موجود ذکر برخی موارد به شرح زیر لازم است.

  1. اجزاء غیرساز‌ه‌ای قدیمی معمولاً با کدها و استانداردهای قدیمی طراحی شده‌اند. بنابراین تراز زلزله طرح و شکل پذیری این اجزاء نسبت به اجزاء جدید بسیار کمتر است.
  2. با توجه به اینکه هدف از مقاوم سازی، محافظت لرزه‌ای اجزاء غیرسازه‌ای موجود است، بهبود شرایط آن برای این که تمام ضوابط آیین نامه‌های طراحی را تأمین کند، بسیار مشکل است.
  3. در هنگام مقاوم سازی باید تمام ظرفیت‌های واقعی جزء غیرسازه‌ای در نظر گرفته شود.

ملاحظات مقاوم سازی لرز‌ه‌ای اجزاء غیرسازه‌ای‌

روش‌های بهسازی

بهسازی اجزای غیرسازه‌ای باید از طریق روش‌های تأیید شده و براساس رده بندی جزء و سطح عملکرد مورد انتظار به انجام رسد. ‌

  1. ‌بهسازی اجزای غیرسازه‌ای حساس به شتاب برای سطح عملکرد، از طریق حفظ موقعیت جزء صورت گیرد. حفظ موقعیت جزء به صورت مهاربندی‌، متصل سازی، ایجاد تکیه گاه یا دیگر روش های تأیید شده به منظور جلوگیری از تغییر مکان جزء در طول زلزله است.‌
  2. ‌بهسازی اجزای غیرسازه ای برای سطح عملکرد گیرد. علاوه بر این، باید خدمت رسانی این تجهیزات در خلال و پس از زلزله حفظ شود.
  3. ‌بهسازی اجزای غیرسازه ای حساس به جابجایی، از طریق تأمین شکلپذیری کافی برای جزء، علاوه بر حفظ موقعیت آن انجام می‌شود. شکلپذیری بالا امکان تحمل جابجایی‌های لرز‌ه‌ای محاسبه شده را به جزء می‌دهد.

روش‌های معمول در بهسازی اجزای غیرسازه‌ای

جایگزینی

جایگزینی به معنی برداشتن کامل جزء و تکیه گاه‌های آن و جایگزینی آن با جزء جدید است. به عنوان مثال برداشتن پانل‌های نمای خارجی و نصب تکیه‌گاه‌ها و پانل‌های جدید به جای آنها.

تقویت

تقویت اجزای غیرسازه‌ای شامل ترمیم و اضافه کردن اعضا و مصالح به جزء به منظور افزایش مقاومت آن در مقابل نیروهای زلزله است. به عنوان مثال، اضافه کردن اعضای تقویتی به تکیه گاه عضو برای جلوگیری از کمانش آن.

تعمیر

تعمیر اجزای غیرسازه‌ای شامل تعمیر و برطر‌ف‌سازی همه قسمت‌ها یا اعضای آسیب دیده جزء به منظور برآورده شدن معیارهای پذیرش است. به عنوان مثال‌، بعضی از اتصالات زنگ زده روکش پانل‌های بتنی پیش ساخته بدون جایگزینی کل پانل می‌توانند تعمیر شوند.

مهاربندی

مهاربندی اجزاء غیرساز‌ه‌ای شامل افزودن اعضاء و اتصالاتی است که به منظور تأمین مهار داخلی جزء و یا مهار آن به سازه ساختمان به کار گرفته می‌شوند. به عنوان مثال، سقف‌های کاذب معلق می‌توانند با اضافه کردن مهاربندی‌های قطری و میله‌های قائم بهسازی شوند.

متصل سازی

متصل سازی اجزاء غیرسازه‌ای شامل روش‌هایی است که عمدتاً اجزاء را به صورت مکانیکی به سازه و یا اجزاء نگهدارنده متصل می‌سازند. اتصال رایج به کار رفته در اجزاء غیرساز‌ه‌ای، پیچ کردن پایه‌ها به کف بتنی سازه است. تکیه گاه‌ها و اتصالات اجزاء مکانیکی و الکتریکی باید براساس اصول مهندسی پذیرفته شده طراحی شوند. بعضی از پیشنهادات درباره اتصال اجزاء غیرسازه‌ای به سازه اصلی بشرح زیر است.

  1. ادوات اتصال و پایه‌هایی که بارهای لرزه ای را منتقل می‌کنند، باید از مصالح مناسب ساخته شده و براساس استانداردهای معتبر طراحی شوند.
  2. اجزاء اتصال مدفون در بتن باید قادر به تحمل نیروهای رفت و برگشتی باشند.
  3. آویزهای میله‌ای کوتاهتر از ۳۰ سانتی متر می‌توانند به عنوان تکیه گاه لرزه‌ای در نظر گرفته شوند. این اعضا باید طوری اجرا شوند که لنگر خمشی در آنها به وجود نیاید.
  4. بست‌های اصطکاکی نباید در اتصالات مهاری (anchorage) مورد استفاده قرار گیرند.
  5. مهارهای انبساطی نباید برای اجزای مکانیکی با قدرت بیشتر از ۱۰ اسب بخار مورد استفاده قرار گیرند.
  6. در مهارهای (Drilled and grouted-in-place) تحت نیروهای کششی باید از سیمان منبسط شونده یا گروت اپوکسی منبسط شونده استفاده شود.
  7. اجزائی که بر روی سیستم‌های جداکننده ارتعاشی قرار دارند، باید در هر جهت افقی دارای ضربه گیر یا کم کفنر باشند. برای این اجزاء نیروی طراحی در نظر گرفته می‌شود.
  8. برای اتصالات پیچی به کف‌های صفحه فلزی که سخت کننده در آنها به کار رفته باشد، باید از واشر استفاده نمود.

ضوابط تجهیزات روشنایی

در مورد تجهیزات روشنایی، علائم روشن شده با نور، پنکه‌های سقفی و اجزاء دیگر که به داکت‌ها یا لوله‌ها متصل نبوده و توسط زنجیر یا به طرق دیگر از سازه آویزان هستند و می‌توانند به طور آزاد نوسان کنند، با تأمین شرایط زیر، نیاز به تکیه گاه (قید) لرزه‌ای اضافی ندارند.

‌در صورتی که این اجزاء توانایی تحمل شرایط و بارهای زیر را داشته باشد.

  1. ۳ برابر بار سرویس (عملیاتی)، به صورت بار ثقلی
  2. ۱/۴ برابر وزن سرویس آن اجزاء به صورت قائم و رو به پایین همراه با نیروی افقی مساوی ۱/۴ برابر وزن سرویس.

جهت بار افقی باید طوری انتخاب شود که بحرانی ترین حالت و در نتیجه محافظه کارانه ترین حالت را نتیجه دهد.

تجهیز با اجزاء سایر سیستم‌ها و قطعات سازه‌ای در حین نوسان برخورد نکند.

اتصال به سازه اجازه حرکت در صفحة افقی را بدهد.

ضوابط اتصال لوله‌ها به تجهیزات

در مورد اتصال لوله‌ها به تجهیزات، در صورتی که اتصال لوله به تجهیزات و محلی از جداره تجهیز که لوله به آن متصل می‌شود صلب باشد، نیروی منتقل شده به تجهیز در محل اتصال شدیداً افزایش می‌یابد. در نظر نگرفتن انعطاف (Flexibility) جداره تجهیز باعث کاهش پریود ارتعاشی سیستم می‌شود که بسته به طیف طرح مورد استفاده می‌تواند سبب نیروهای طراحی کوچکتر و یا در موارد خاصی بزرگتر شود.

به علت اینکه این انعطاف به صورت توامان بر روی جابجایی سیستم خط لوله و نیروهای وارد بر آن تاثیر قابل توجهی دارد، کاهشی یا افزایشی بودن اثر آن به آسانی قابل تشخیص نیست. بنابراین لازم است در محل اتصال خط لوله به تجهیزات، قابلیت ارتجاعی تجهیز در مد لسازی لحاظ شود. میزان سختی کل تجهیز به سختی خمشی تجهیز و تکیه‌گاه آن بستگی دارد.


منبع : عمران سافت


این کلمات به صورت پیش‌فرض زیر مطلب نمایش داده خواهند شد.
  • مقاوم سازیx
  • مقاوم سازی سازه فولادیx
  • مقاوم سازی در گیلانx
  • بهسازی لرزه ایx
  • بهسازی ساختمانx
  • نکات مهم مهندسی عمرانx
  • نکات اجرایی ساختمانx
  • نکات مهم در مهندسی عمرانx
  • نکات مهم طراحی سازه فلزی
۰ نظر موافقین ۰ مخالفین ۰ ۱۸ بهمن ۹۶ ، ۱۹:۲۳
ش.م

گچ

گچ ساختمانى از پختن و آسیاب کردن سنگ گچ به دست مى‌آید. سنگ گچ کانى کلسیم دارى (کلسیم سولفات آب دار) است که در طبیعت، به وفور و تقریباً در تمام نقاط ایران یافت مى‌شود. سنگ گچ از سنگ‌هاى رسوبى با درجه‌ى سختى ٢ است که به دلیل میل ترکیبى شدید به طور خالص یافت نمى‌شود و بیشتر به صورت مخلوط با آهک و خاک رس یا ترکیب با کربن یا اکسیدهاى آهن یافت مى‌شود. سنگ گچ‌هاى خالص سفید رنگ‌اند.

گچ پلیمری پاششی

مصارف گچ

مصارف گچ زیاد است و از گچ ریزى براى پیاده کردن نقشه ساختمان تا ساختن انواع ملات‌هاى گچى و سفیدکارى، سنگ کارى، مجسمه سازى، گچ برى، اجراى ابزارهاى گچى و صنعت سیمان سازى‌ استفاده می‌کنند.‌

ملات گچ و خاک را در اندود آستر روى دیوار و زیر سقف و ساختن طاق ضربى و ملات گچ خالص را در سفید کارى و گچ برى مصرف مى‌کنند.

ویژگى‌هاى گچ

رنگ گچ ساختمانى سفید است و سطح پوشیده شده‌ى با آن را مى‌توان با رنگ لعابى یا پلاستیکى یا روغنى رنگ کرد. در دوره‌ى صفویه به ملات گچ رنگ اضافه مى‌کردند و اندود رنگى پساز خش کشدن رنگش باقى مى‌ماند.

گچ گرما و صدا را پخش نمى‌کند و در برابر آتش سوزى مقاوم است. ملات گچ یخ نمى‌زند و مى‌توان تا سرماى زیر ده درجه سانتى گراد در کار بنایى از آن استفاده کرد.

با اضافه کردن افزودنى‌ها مانند نمک طعام، گرد آهک و سریش مى‌توان زمانِ گیرایش گچ راسریع‌تر نمود یا آن را به تأخیر انداخت.

ملات گچ ساختمانى هنگام گرفتن یک درصد حجمش زیاد مى‌شود و همه سوراخ‌هاى ریزپوسته رو مالى پر مى‌شود. از این رو مى‌توان سطح‌هاى بزرگ را بدون این که ترک بخورد اندود کرد.

سطح بیرونى گچ چون پوک نیست و سوراخ ندارد قارچ نمى‌زند و حشره در آن لانه نمى‌کند. گچ در برابر نفوذ رطوبت ضعیف است و اگر این پوسته آب بمکد و آب به آستر برسد گچ طبله مى‌کند و باید آن را کند و دوباره تجدید نمود.

ملات گچ با فلزات سولفات درست مى‌کند. از این رو در پوشش‌هاى طاق ضربى براى پیش گیرى باید تیر آهن را به خوبى با ضد زنگ رنگ کرد.

گچ پلیمری پاششی

کاربرد گچ ساختمانی جهت سفیدکاری و یا گچ خاک به طریق دستی بدلیل گران بودن ساعت کاری و کافی نبودن سرعت گچ کاری بخصوص در پروژه‌های بزرگ در کشورهای مختلف موجب شده است که هر روز استفاده از گچ پاششی گسترده‌تر شود. لذا به این منظور ماشین گچ پاش ساخته شده گچ به وسیله آن گچ بر روی دیوار پاشیده می شود.

پایه اصلی گچ پاششی گچ خالص چند فازی یا گچ بتا است که با افزودنی‌های خاصی گچ کندگیرتر (گچ دیرگیر) می‌شود.

 روش انجام گچ کاری با استفاده از گچ پلیمری پاششی

ماشین گچ پاش بصورتی طراحی شده که گچ را با نسبت خاصی با آب مخلوط کرده سپس دستگاه گچ پاش با پمپی که در آن خمیر گچ را توسط لوله مخصوص به سر نازل گچ پاش هدایت کرده و در سر نازل لوله دیگری که به پمپ هوای فشرده متصل است، مخلوط هوای فشرده و خمیر گچ را بدیدن وسیله یک یا دو لایه به ضخامت ۲ ال ۱۲۰ میلیمتر به دیوار می‌پاشد.

‌سپس لایه گچ را توسط شمشه‌های دستی صاف کرده و همچنین تراز می‌نمایند. روش گچ کاری با گچ پاششی بیشتر برای فضاهای بزرگ مقرون به صرفه است.

زمان گیرش گچ پاششی برای کارهای برزگ و سطوح بیشتر در نظر گرفته شده و با افزودنی نگهدارنده آب (کلویید هیدروفیل) از خارج شدن سریع آب محتوی در گچ جلوگیری بعمل آمده تا خمیر گچ خاصیت قابل کار بودن را دارا باشد.

انواع گچ پاششی

  • گچ پاششی معمولی
  • گچ پاششی عایقکاری
  • گچ پاششی لایه نازک
  • گچ پاششی عایقکاری روی پشم سنگ

منبع : عمران سافت


  • مواد نوین ساختمانیx
  • مواد شیمی ساختمانx
  • مواد شیمیایی بتنx
  • نکات مهم مهندسی عمرانx
  • نکات مهم در مهندسی عمرانx
  • نکات اجرایی ساختمانx
  • نکات مهم ساختمانیx
  • نکات مهم نظارتx
  • نکات مهندسی عمرانx
  • نکات مهم اجرایی عمران
۰ نظر موافقین ۰ مخالفین ۰ ۱۸ بهمن ۹۶ ، ۱۹:۲۰
ش.م

فولادهای ساختمانی

فولاد از مهمترین مصالح ساختمانی است. مشخصات مهم فولاد که آن را نسبت به سایر مصالح ساختمانی ممتاز ساخته‌، مقاومت زیاد‌، شکل پذیری و یکسان بودن مقاومت آن در فشار و کشش است. در کنار مزایای فوق، فراوانی معادن سنگ آهن نیز از عوامل موثر در عمومیت یافتن مصرف فولاد است. مهم ترین ویژگی رفتاری فولاد‌، نمودار تنش – کرنش آن تحت آزمایش کشش است. که از روی این نمودار تنش تسلیم یا جاری شدن فولاد به دست می‌آید.

‌فولادهای ساختمانی

انواع فولادها

فولاد کربن دار به فولادی اطلاق می‌شود که علاوه بر آهن، حداکثر درصد کربن و آلیاژهای مختلف آن‌ شامل‌ کربن ۱/۷٪، منگنز ۱/۶۵٪ ،  سیلیکن ۰/۶٪، و مس ۰/۶٪ ‌است.

کربن و منگنز عناصر اصلی افزایش نسبت به آهن خالص هستند. فولادهای کربن دار حد فاصل آهن خالص (صفر درصد کربن) و چدن (۱/۷ ٪) بر حسب درصد کربن به شرح زیر است.

  • فولاد کم کربن : مقدار آن کمتر از ۰/۱۵ ٪ است.
  • فولاد با کربن ملایم: مقدار آن حدود ۰/۱۵ الی ۰/۲۹ درصد است.
  • فولاد با کربن متوسط : مقدار آن حدود ۰/۳ الی ۰/۵۹ درصد است.
  • فولاد با کربن زیاد: مقدار آن حدود ۰/۶ الی ۱/۷ درصد است.

فولاد نرمه ساختمانی (فولاد ساختمانی)

این فولاد در رده فولاد با کربن متوسط قرار دارد. این نوع فولاد دارای پله تسلیم مشخص بوده و پروفیل‌های ساختمانی بر اساس آن ساخته شده‌اند. افزایش درصد کربن باعث افزایش تنش تسلیم، کاهش شکل پذیری و مشکلات در جوش پذیری می‌شود.

در صورتی که مقدار کربن از ۰/۳ درصد تجاوز نماید عمل جوشکاری پر خرج شده و احتیاج به پیش گرمایش‌، پس گرمایش و الکترودهای خاص خواهد بود.

انواع سازه‌های ساختمانی

قاب‌های خمشی (قاب‌های پیوسته)

در این نوع قاب‌ها اتصال تیر به ستون به اندازه کافی صلب است به طوری که در تغییر شکل قاب، زاویه اولیه بین تیر و ستون بدون تغییر باقی می‌ماند.

قاب‌های ساده

در این نوع قاب‌ها اتصال تیر به ستون مفصل است و صلبیت ندارد. این اتصالات می‌توانند آزادانه دوران کند.

قاب‌های مهاربندی شده

اگر در قاب‌های ساده برای تحمل نیروهای جانبی (باد و زلزله) از عضوهای مورب (مهاربند) استفاده شود، قاب را مهاربندی شده می‌گویند، این قاب‌ها به دو دسته زیر تقسیم می‌شوند.

  1. قاب‌های مهاربند هم محور (CBF)
  2. قاب‌های مهاربند بورن محور (EBF)

قاب‌های مرکب (ترکیبی)

اگر اتصال تیر به ستون از نوع صلب باشد و از سیستم‌های مهاربندی شده نیز استفاده شود، قاب را ترکیبی می‌گویند.

مزایای سازه‌های فولادی

 مقاومت زیاد‌

مقاومت قطعات فلزی زیاد بوده و نسبت مقاومت به وزن از مصالح بتن بزرگتر است به این علت در دهانه‌های بزرگ سوله‌هاو ساختمان‌های مرتفع، ساختمان‌هایی که بر زمین‌های سست قرار می‌گیرند، حائز اهمیت فراوان است.

خواص یکنواخت‌

ا‌ز یکنواخت بودن خواص فلز می‌توان اطمینان حاصل کرد که خواص آن بر خلاف بتن با عوامل خارجی تحت تاثیر قرار نمی‌گیرد. اطمینان در یکنواختی خواص مصالح در انتخاب ضریب اطمینان کوچک موثر است که خود صرفه جویی در مصرف مصالح را باعث می‌شود.‌

‌دوام‌

دوام فولاد بسیار خوب و مناسب است. ساختمان‌های فلزی‌‌ برای مدت طولانی قابل بهره‌برداری خواهد بود.

‌خواص ارتجاعی‌

خواص‌ ارتجاعی فولاد با تقریب بسیار خوبی مصداق عملی دارد فولاد تا تنش‌های بزرگی از قانون هوک به خوبی پیروی می‌کند. مثلا ممان اینرسی یک مقطع فولادی را می‌توان با اطمینان در محاسبه وارد نمود حال اینکه در مورد مقطع بتنی ارقام مربوطه چندان معین و قابل اطمینان نیست.

‌شکل پذیری‌

از خاصیت مثبت مصالح فلزی شکل پذیری آن است که قادرند تمرکز تنش را ‌در مقابل این نیروها که فوق العاده ضعیف‌اند،‌ در هنگام خرابی‌ از تخریب ناگهانی و خطرات آن جلوگیری‌ کنند.

‌پیوستگی مصالح ‌

قطعات فلزی با توجه به مواد متشکله آن پیوسته و همگن است ولی در قطعات بتنی صدمات وارده در هر زلزله به پوشش بتنی روی سطح میلگرد وارد می‌شود، قابل کنترل نبوده و احتمالاً ساختمان در پس لرزه یا زلزله بعدی ضعف بیشتر داشته و تخریب می‌شود.

تقویت پذیری و امکان مقاوم سازی‌

اعضای ضعیف ساختمان فلزی را در اثر محاسبات اشتباه، تغییر مقررات و ضوابط اجرا، می‌توان با جوش‌ یا پرچ‌ یا پیچ کردن قطعات جدید تقویت نمود ‌یا قسمت یا دهانه‌های جدید را اضافه کرد.

شرایط آسان ساخت و نصب‌

تهیه قطعات فلزی در کارخانجات و نصب آن در موقعیت شرایط جوی متفاوت با تمهیدات لازم قابل اجرا است.

اشغال فضا

در دو ساختمان مساوی از نظر ارتفاع‌، ابعاد ستون و تیرهای ساختمان‌های فلزی از نظر ابعاد کوچکتر از ساختمان‌های بتنی است. سطح اشغال یا فضای مرده در ساختمان‌های بتنی بیشتر ایجاد می‌شود.

ضریب نیروی لرزه‌ای

حرکت زمین در اثر زلزله موجب اعمال نیروهای درونی در اجزا ساختمان می‌شود‌. در قاب‌های بتن مسلح که وزن بیشتر دارد ضریب نیروی لرزه‌ای، بیشتر از قاب‌های فلزی است.

معایب سازه‌های فولادی

‌ضعف در دمای زیاد

مقاومت ساختمان فلزی با افزایش دما کاهش یافته، اگر دمای دمای اسکلت فلزی از ۵۰۰ به ۶۰۰ درجه سانتی گراد برسد تعادل ساختمان به خطر می‌افتد.

‌خوردگی و فساد فلز در مقابل عوامل خارجی

‌قطعات مصرفی در ساختمان فلزی در مقابل عوامل جوی خورده شده و از ابعاد آن کاسته می‌شود و مخارج نگهداری و محافظت آن زیاد است.

‌تمایل قطعات فشاری به کمانش‌

با توجه به اینکه قطعات فلزی زیاد و ابعاد مصرفی معمولاً کوچک است تمایل به کمانش در این قطعات یک نقطه ضعف به شمار می‌آید.

‌جوش نامناسب‌

در ساختمان‌های فلزی اتصال قطعات به همدیگر با جوش، پرچ، پیچ صورت می‌گیرد‌.‌ اتصال با جوش به علت عدم مهارت کافی جوش کاران، استفاده از ماشین آلات قدیمی، عدم کنترل توسط مهندس ناظر، گران بودن هزینه آزمایش جوش، بزرگترین ضعف است.

موارد و اشکال مصرف فولاد در ساختمان

‌ورق و تسمه

ورق و تسمه در ساخت قطعات مرکب مانند تیرهای مرکب، ستون‌های مرکب و تقویت آنها مورد استفاده قرار می‌گیرند و نقش عمده‌ای در ساخت سازه‌های فلزی دارند. ورق‌هایی که عرض آنها کمتر از ۱۶۰ میلیمتر است، تسمه نامیده می‌شود.

ورق‌های موجدار

برای پوشش سقف‌های مرکب و دیواره‌های فولادی استفاده می‌شود.

میلگرد

انواع میلگرد مصرفی از نظر تولید به دو گروه گرم نورد شده و سرد اصلاح شده، از نظر سطح به دو گروه ساده و آجدار، از نظر جوش‌پذیری به سه گروه جوش‌پذیر، جوش‌پذیر مشروط و جوش ناپذیر، از نظر شکل‌پذیری به سه گروه نرم، نیمه سخت و سخت تقسیم می‌شوند.

نیمرخ‌های نورد شده

مهمترین نوع و شکل فولادهای ساختمانی از لحاظ نیمرخ‌های که به روش نورد گرم یا سرد به دست می‌آیند به شرح زیر است.

تیرآهن نیمرخ I 

این نیمرخ از معمولی‌ترین نیمرخ‌های مصرفی در سازه‌های فلزی است و مقاومت آن در خمش زیاد است. انواع متداول آن شامل نیمرخ معمولی INP‌، نیمرخ بال پهن IPB و نیمرخ نیم پهن IPE است.

نیمرخ U یا ناودانی

این نیمرخ به صورت تک در مقابل خمش ضعیف است و برای جبران این ضعف در تیرهای مرکب و مشبک و همچنین به صورت جفت به کار می‌برند. نیمرخ ناودانی را به شکل UNP یا CNP نمایش می‌دهند.

نیمرخ نبشی یا L شکل

نبشی به دو صورت نبشی یا بال‌های مساوی یا نامساوی ساخته می‌شود. این نیمرخ را در سازه‌های فلزی به خصوص در ساختن اشکال مرکب به کار می‌برند.

نیمرخ سپری یا T شکل

این نیمرخ‌ها در دو نوع به شرح زیر هستند. سپری‌هایی که قاعده آنها دو برابر ارتفاعشان است و سپری‌هایی که ارتفاع و قاعده آنها با هم برابرند. مصارف این نیمرخ در کارهای ساختمانی مشابه مصارف نبشی است.

نیمرخ Z

این پروفیل را برای زیرسازی و بستن ورق‌های فلزی یا ورق‌های آزبست سیمانی در سقف‌های شیبدار به کار می‌برند.

نیمرخ‌های توخالی قوطی و لوله

این نیمرخ در ساخت ستون‌ها و مواردی که نیاز به خصوصیات هندسی زیاد، حول هر دو محور اصلی است، استفاده می‌شود.

پرچ

پرچ‌های ساختمانی معمولاً از فولاد معمولی و فولاد منگنزدار ساخته شده و در سه نوع درجه ۱ و ۲ و ۳ تولید می‌شوند.

واشر

واشرها در کارهای فلزی ساختمان به همراه پیچ‌ها، پیچ‌های دوسر و مهره‌ها استفاده می‌شوند تا سطح و فضای باربری را افزایش داده و از ساییدگی جلوگیری شود.

کاربردهای فولادهای ساختمانی

کاربرد‌های فولاد زنگ نزن بسیار گسترده است. فولاد زنگ نزن و به اصطلاح ‌همان استیل است. از اشکال مختلف فولاد زنگ نزن در صنایع می‌توان به ورق‌، لوله‌، پروفیل و .. اشاره کرد‌. از فولاد زنگ نزن برای موارد تزئینی بسیاری همچون دیوار آسانسور‌ها، دستگیره درب‌ها، ساخت ساعت، وسائل تزئینی منزل و .. استفاده می‌شود. هم چنین یکی از بیشترین کاربرد‌های فولاد زنگ نزن در آشپزخانه است که برای تولید سینک‌های ظرف شویی، کابینت‌ها، یخچال و فریزر، اجاق گاز، ماکروفر و … مورد استفاده قرار می‌گیرد.

‌فولادهای ساختمانی کربنی

به طور کلی این دسته از فولادها به دو دسته اصلی با استانداردهای مختلف تقسیم می‌شوند که به شرح زیر است.

  •  نوع اول با دارا بودن مقاومت در مقابل سایش و حرارت در کارخانجات سیمان و آجر سازی به منظور ساخت قطعات یدکی مانند سرندهای سنگ شکن، سپرهای آسیاب، بدنه ماشین آلات و دیگر قطعات یدکی مانند شاتون دسته پیستون، شافت، دوک، پیم آچار، اهرم، میخ، دنده مارپیچی و انواع کوپلینگ و سایر قطعات مشابه به کار می‌رود.
  • نوع دوم فولاد سرد کشیده شده و پلیش خورده ۲-ST60 برای ساخت شافت‌های چاه عمیق، لوازم یدکی ماشین آلات در راه آهن، نساجی، ماشین سازی، کشتی سازی و غیره مورد استفاده قرار می‌گیرد. ‌

فولادهای ساختمانی آلیاژی

فولادهای ساختمانی آلیاژی به دو نوع مختلف با موارد مصرف مشخص، تحت استاندارهای بین المللی تعریف شده در این زمینه تقسیم شده‌اند که هر یک از آنها به شرح زیر است.

‌نوع اول این دسته از فولادها دارای چهار استاندارد مختلف است که برای ساخت قطعات یدکی مانند پلوس، فول، میل لنگ، شاتون، اکسل ماندالین، محور، شافت، میل گاردن، دسته پیستون و وسایل یدکی هواپیما و سایر قطعات ماشین آلات به کار می‌رود. فولاد ٧٢٢٥ به علت کم شدن سختی از سطح تا مفز برای ساخت قطعاتی که ضربه خور زیاد داشته و باید حالت ارتجاعی نیز داشته باشند بیشتر مورد استفاده قرار می‌گیرند. گرچه این فولادها عملاً برای ساخت قالب‌های پلاستیکی نیز مورد استفاده قرار می‌گیرند. ولی استانداردهای ٦٥٨٠ و ٦٥٨٢ به علت دارا بودن کرم و نیکل بالا دارای پلیش بهتری هستند.

این فولاد برای ساخت میل لنگ، شافت، اکسل، دوک، شاتون و سایر قطعاتی که فشارهای معمولی و متوسط را باید متحمل شوند مورد استفاده قرار می‌گیرند.


منبع : عمران سافت

این کلمات به صورت پیش‌فرض زیر مطلب نمایش داده خواهند شد.

  • سازه فولادی و بتنیx
  • نکات مهم مهندسی عمرانx
  • نکات مهم در مهندسی عمرانx
  • نکات مهم ساختمانیx
  • نکات اجرایی ساختمانx
  • نکات مهم اجرایی عمرانx
  • نکات اجرایی در خصوص میل گرد هاx
  • نکات مهم طراحی سازه فلزی
۰ نظر موافقین ۰ مخالفین ۰ ۱۸ بهمن ۹۶ ، ۱۹:۱۸
ش.م

بتن ریزی دال‌ها و سقف‌ها

بتن ریزی در دال‌ها باید در یک جهت به طور متوالی انجام شود. محموله‌های بتنی نباید در نقاط مختلف سطح و به صورت پراکنده ریخته شود‌ و سپس به تسطیح آن پرداخت. همچنین نباید بتن را در یک محل و در حجم زیاد تخلیه و سپس به طور افقی در طول قالب حرکت داده شود. با توجه به حجم بتن و روش‌های حمل و تخلیه عملیات باید به صورتی انجام شود که حتی الامکان از به وجود آمدن اتصال سرد در دال‌ها پرهیز شود.

بتن ریزی دیوار، ستون و تیرهای اصلی

بتن ریزی دیوار، ستون و تیرهای اصلی

بتن ریزی در دیوارها باید در لایه‌های افقی با ضخامت یکنواخت صورت گیرد و هر لایه قبل از ریختن لایه بعدی به طور کام متراکم شود. میزان وسعت بتن ریزی باید چنان باشد که هنگام ریختن لایه جدید لایه قبلی در حالت خمیری باشد. عدم رعایت این نکته باعث ایجاد اتصال سرد و در نهایت عدم یکپارچگی بتن خواهد شد. پیمانه‌های اولیه بتن باید از دو انتها عضو ریخته شوند و سپس بتن ریزی به قسمت مرکزی سازه ادامه یابد. در تمام حالات باید از جمع شدن آب در انتها و گوشه‌ها جلوگیری شود.

در بتن ریزی به قسمت مرکزی سازه ادامه یابد. در تمام حالات باید از جمع شدن آب در انتها و گوشه‌ها جلوگیری شود. در بتن ریزی ستون‌ها حتی الامکان باید ارتفاع سقوط آزاد بتن را محدود نمود. این ارتفاع برای جلوگیری از جدا شدن دانه‌ها به ۰/۹ تا ۱/۳ متر محدود می‌شود.

در صورتی که بتن احیاناً در قالب‌های بلند ریخته شود برای جلوگیری از آب انداختن بتن توصیه می‌شود از اسلامپ کم (بتن سفت) استفاده شود. کاستن از سرعت بتن ریزی نیز تا حدود زیادی از آب انداختن بتن جلوگیری می‌نماید. در ستون‌های بلند در صورت امکان می‌توان بتن را تا تراز ۳۰ سانتیمتر پایین‌تر از تراز قطعی ریخته و پس از یک ساعت، قبل از اینکه سطح بتن سخت شود بتن ریزی را مجدداً از سر گرفته تا از ایجاد اتصالات سرد جلوگیری شود.

توصیه می‌شود برای جلوگیری از ضایعات ناشی از آب انداختگی بتن ارتفاع ستون ۲/۵ سانتیمتر بیشتر اختیار شود و بتن اضافی بعد از آنکه سخت شد تخریب شود. به مظنور جلوگیری از ترک‌های ناشی از نشست خمیری بتن ستون‌ها و دیوارها توصیه می‌شود بتن ریزی این اعضا حداقل ۲۴ تا ۴۸ ساعت قبل از بتن ریزی تیرهای اصلی، تیرها، دال‌ها، و مجاور آنها انجام شود.

ماهیچه‌ها و سر ستون‌ها باید به صورت یکپارچه با ستون ریخته شوند.


منبع : عمران سافت


  • نکات مهم مهندسی عمرانx
  • نکات مهم در مهندسی عمرانx
  • نکات اجرایی ساختمانx
  • نکات مهم ساختمانیx
  • نکات مهم نظارتx
  • نکات مهندسی عمرانx
  • نکات مهم اجرایی عمرانx
  • نکاتی که باید در اجرای یک ساختمان در نظر داشته باشیم به شرح زیر استx
  • نکات ایمنی ساختمانx
  • نظام و مهندسی گیلان
۰ نظر موافقین ۰ مخالفین ۰ ۱۸ بهمن ۹۶ ، ۱۹:۱۵
ش.م

گسل

گسل یا گسله‌ به شکستگی‌هایی اطلاق می‌شود که سنگ‌های دو طرف صفحهٔ شکستگی نسبت به یکدیگر حرکت کرده باشند. این جابه‌جایی می‌تواند از چند میلی‌متر تا صدها متر باشد. انرژی آزاد شده به هنگام حرکت سریع گسل‌های فعال، عامل وقوع اغلب زمین‌لرزه‌ها است.

گسل‌های بزرگ در پوسته زمین نتیجه حرکت برشی زمین هستند و زمین‌لرزه‌ها نیز نتیجه نیروی رها شده در حین لغزش سریع لبه‌های یک گسل به هم هستند. بزرگ‌ترین نمونه‌های گسل، مرزهای میان ورقه‌های زمین‌ساختی کره زمین است. از آنجا که یک گسل معمولاً از یک شیار مستقیم و مرتب تشکیل نشده و ناحیه‌ای از تغییر شکل‌های پیچیده زمین را در بر می‌گیرد معمولاً بجای گسل از ‌منطقه گسلی‌ صحبت می‌کنند. بزرگ‌ترین گسل ایران گسل زاگرس است.

رابطه بین گسل و زمین لرزه

ساختار گسل

گسل‌ها نوعى ساختار خطى، همراه با جابه‌جایى هستند که بر تحولات زمین ساختى و همچنین تکوین حوضه‌هاى ساختارى – رسوبى ایران اثر در خور توجه داشته‌اند. از این میان، اثر گسل‌هاى طولى عمده، همزمان با جنبش‌هاى کوه‌زایى کاتانگایى (پرکامبرین پسین) به مراتب بیشتر است. روند این گسل‌ها در بیشتر جاها با روندهاى زمین ساختى مربوط به چین خوردگى کاتانگایى همخوان است و در راستاى شمالى – جنوبى قرار دارد.

شناخت گسله‌ها و بررسی ویژگی‌های گسلی از دو دیدگاه مهم است. اول این که گسل‌های پوسته قارهای بدلیل اینکه زون برشی ایجاد می‌کنند و به صورت مجموعه‌ای از سنگ‌های خرد شده دیده می‌شوند، خاستگاه مواد معدنی هستند. مطالعه گسله‌ها به شناسایی کانسارها، نحوه پراکندگی، اکتشاف و استخراج مواد معدنی کمک می‌کند.

مطالعه گسل‌ها از آنجائی که توان لرزه زایی دارند، دارای اهمیت است‌. شناسایی زون‌های گسلی فعال و برآورد توان لرزه زایی این گسله‌ها می‌تواند در کاهش خسارت‌های جانی و مالی مهم باشد.

قرارگیرى کانون زمین لرزه‌هاى سده بیستم در درازاى بسیارى از گسل‌هاى ایران، نشان مى‌دهد که بسیارى از گسل‌هاى ایران هنوز فعال هستند.

گسل‌ها در تحولات زمین ساختى گوناگون (دگرشیبى، چینخوردگى، ماگماتیسم) نقش مؤثرى داشته‌اند. براى نمونه، بسیارى از تکاپوهاى آتشفشانى شکافى ایران از طریق گسل‌ها و بازشدگى آنها به سطح زمین رسیده‌اند.

‌در ریخت زمین ساخت امروز ایران، گسل‌هاى طولى و عمده نقش سازنده داشته‌اند به گونه‌اى که بسیارى از روندهاى ساختارى کنونى ایرانزمین نتیجه حرکت افقى و قائم گسل‌ها است.

در طول یک گسل، مقدار و ساز و کار جابه‌جایى، یکسان و همانند نیست و ممکن است بخشى از یک گسل به صورت فشارى و بخش دیگر آن به صورت کششى عمل کند.

طبقه‌بندی بر اساس شیب سطح گسل

زمین‌شناسان، گسل‌ها را بر اساس لغزش به سه دسته تقسیم می‌کنند.

  1. در صورتی که لغزش کلی در جهت شیب گسل باشد، گسل شیب‌ لغز (Dip-slip fault) نامیده می‌شوند.
  2. در صورتی که لغزش کلی به موازات امتداد گسل باشد، گسل امتداد لغز (Strike-slip fault) نامیده می‌شوند.
  3. در صورتی که لغزش دارای هر دو مؤلفهٔ امتدادی و شیبی باشد، گسل مورب‌ لغز (Oblique-slip fault یا Diagonal-slip fault) نامیده می‌شوند.

گسل شیب‌ لغز

گسل‌های شیب‌ لغز هم می‌توانند ‌عادی‌‌ و هم ‌معکوس باشند. گسل‌های عادی هنگامی ایجاد می‌شوند که پوستهٔ زمین تحت کشش باشد. در گسل‌های شیب‌ لغز عادی، فرادیواره نسبت به فرودیواره به سمت پایین حرکت کرده‌ است. وضعیت گسل‌های معکوس، خلاف گسل‌های عادی است. بدین معنی که فرادیواره نسبت به فرودیواره به سمت بالا حرکت می‌کند. گسل‌های معکوس هنگامی ایجاد می‌شوند که پوستهٔ زمین تحت فشار باشد. شیب گسل‌های معکوس نسبتاً زیاد و بیش از ۴۵ درجه است.

گسل‌های رانده جابه‌جایی‌ای همانند گسل‌های معکوس دارند منتها شیب صفحهٔ گسل کمتر ار ۴۵ درجه است.‌

گسل امتداد لغز

در گسل‌های امتداد لغز جابه‌جایی به موازات امتداد گسل صورت می‌گیرد. در این نوع گسل‌ها سطح گسل تقریباً عمودی است. گسل‌های امتداد لغز راست‌بر را گسل‌های راست‌ لغز و گسل‌های امتداد لغز چپ‌بر را گسل‌های چپ‌لغز نیز می‌نامند.

گسل مورب‌ لغز

گسلی که هم مؤلفهٔ لغزشی امتدادی داشته باشد و هم مؤلفهٔ لغزشی شیبی، گسل مورب‌ لغز نام دارد. تقریباً همهٔ گسل‌ها هر دو مؤلفه را دارند، ولی کوچک. در نتیجه برای اینکه همهٔ گسل‌ها در این دسته جای نگیرند، لازم است که هر دو مؤلفهٔ گسل‌های مورب‌ لغز قابل اندازه‌گیری و درخور توجه باشند.

دسته‌بندى گسل‌هاى ایران

گسل‌هاى ایران را مى‌توان بر اساس زمان پیدایش، زمان آخرین حرکت و پراکندگى جغرافیایى دسته‌بندى کرد. در نقشه لرزه‌ زمین ساخت ایران، ‌گسل‌هاى ایران به سه دسته عمده زیر تقسیم شده‌اند.

گسل‌هاى زمین‌لرزه‌اى جوان

که در طى رویدادهاى زمین‌لرزه‌اى و مخرب زمان حال به وجود آمده‌اند و یا دوباره فعال شده‌اند مانند گسل ایپک، گسل دشت بیاض.

گسل‌هاى کواترنرى

گسل‌هایى هستند که در دو میلیون سال گذشته حرکت داشته‌اند (مانند گسل کلمرد) ولى به ظاهر زمین لرزه تاریخى و ثبت شده ندارند.

گسل‌هاى پیش از کواترنرى

این گسل‌ها سنى بیش از دو میلیون سال دارند ولى به احتمال از زمان جنبش‌هاى آلپ پایانى تاکنون حرکتى نداشته‌اند. با این حال، نباید این گسل‌ها را مرده تصور کرد چرا که ممکن است حرکت‌هاى جوان آنها ناشناخته باشد. در ضمن، در بسیارى از حالات، ممکن است در اثر فرسایش، پوشش گیاهى‌ یا عملکرد انسان، نشانه حرکت‌هاى جوان این گسل‌ها از بین رفته باشد. لذا، هرگز نباید اهمیت این گسل‌ها را نادیده گرفت.

زمین لرزه یا زلزله

زمین‌ لرزه یا زلزله لرزش و جنبش زمین است که به علت آزاد شدن انرژی ناشی از گسیختگی سریع در گسل‌های پوستهٔ زمین در مدتی کوتاه روی می‌دهد. محلی که منشأ زمین‌ لرزه است و انرژی از آنجا خارج می‌شود را کانون ژرفی، و نقطهٔ بالای کانون در سطح زمین را مرکز سطحی زمین‌ لرزه گویند. پیش از وقوع زمین‌لرزهٔ اصلی معمولاً زلزله‌های نسبتاً خفیف‌تری در منطقه روی می‌دهد که به پیش‌لرزه معروفند. به لرزش‌های بعدی زمین‌ لرزه نیز پس‌ لرزه گویند که با شدت کمتر و با فاصلهٔ زمانی گوناگون میان چند دقیقه تا چند ماه رخ می‌دهند.

زمین لرزه نتیجهٔ رهایی ناگهانی انرژی از داخل پوسته زمین است که امواج ارتعاشی را ایجاد می‌کند. زمین لرزه‌ها توسط دستگاه زلزله سنج یا لرزه نگار ثبت می‌شوند. مقدار بزرگی یک زلزله متناسب با انرژی آزاد شده زلزله است. ‌

در نزدیکی سطح زمین، زلزله به صورت ارتعاش یا گاهی جابجایی زمین نمایان می‌شود. زمانی که مرکز زمین‌ لرزه در داخل دریا باشد، در صورت تغییر شکل زیاد و سریع بستر دریا، باعث ایجاد سونامی می‌شود که معمولاً در زلزله‌های بزرگتر از‌ هشت ریشتر اتفاق می‌افتد. ارتعاشات زمین باعث ریزش کوه و همین طور فعالیت‌های آتشفشانی می‌شوند.

در حالت کلی کلمه زمین لرزه هر نوع ارتعاشی را در بر می‌گیرد، چه ارتعاش طبیعی چه مصنوعی توسط انسان. ‌همچنین موجب ایجاد امواج ارتعاشی می‌شود. زمین لرزه‌ها اغلب نتیجه حرکت گسل‌ها هستند، و‌ می‌تواند حاصل فعالیت‌های آتشفشانی، ریزش کوه‌ها، انفجار معدن‌ها، و آزمایش‌های هسته‌ای باشند. نقطهٔ آغازین شکاف لرزه را کانون می‌نامند. مرکز زمین‌لرزه نقطه‌ای در راستای عمودی کانون و در سطح زمین است.

انواع گسل‌

سه نوع عمده از گسل وجود دارد که ممکن است موجب زلزله بشوند.

نرمال

گسل‌های نرمال و معکوس نمونه‌هایی از شیب – لغزش هستند، که در آن جابه جایی در امتداد گسل در جهت شیب و حرکت بر روی آنها شامل مولفهٔ عمودی می‌شود. گسل نرمال عمدتاً در حوزه‌هایی رخ می‌دهد که پوسته مانند مرز واگرا در حال تمدید شدن است.

معکوس (محوری)

گسل معکوس در مناطقی که پوسته مانند مرز همگرا در حال کوتاه شدن است رخ می‌دهد.

ضربه‌ای – لغزشی

گسل‌های ضربه‌ای – لغزشی ساختمان‌های شیب داری دارند که دو طرف گسل به صورت افقی در کنار یکدیگر می‌لغزند. مرزهای تبدیلی نوع خاصی از گسل ضربه‌ای – لغزشی هستند. زلزله‌های بسیاری ناشی از جنبش در گسل‌هایی هستند که شامل هر دو نوع شیب – لغزش و ضربه‌ای – لغزشی است، این لغزش به عنوان مورب شناخته شده‌است.

آثار زمین لرزه

برخی از آثار زلزله به شرح زیر است.

لرزاندن و گسیختگی زمین

لرزاندن و گسیختگی زمین، اثرات اصلی ایجاد شده توسط زمین لرزه هستند. اساساً منجر به آسیب زیاد یا کم ساختمان‌ها و دیگر سازه‌های سفت و سخت می‌شود. شدت عوارض بستگی به ترکیب پیچیدهٔ بزرگی زلزله، فاصله از مرکز زلزله، شرایط زمین‌شناسی و geomorpholical محل دارد که باعث تقویت یا کاهش انتشار امواج می‌شود. تکان زمین را با شتاب زمین اندازه‌گیری می‌کنند. ویژگی‌های خاص زمین‌شناسی، geomorphological و geostructurall محل می‌توانند میزان لرزش زمین را حتی در زلزله‌های کم شدت افزایش دهند. این اثر، سایت یا تقویت محلی نامیده شده‌ است.

اصولاً به دلیل انتقال حرکت لرزه‌ای از خاک سخت به خاک سطحی نرم، تمرکز و ذخیرهٔ انرژی لرزه‌ای در کانون به علت نوعی تنظیم هندسی است. گسیختگی زمین در واقع شکستن آشکار و جابه جایی سطح کره زمین در طول گسل است که ممکن است در مورد زلزله بزرگ، مترها باشد. گسیختگی زمین خطر بزرگی برای سازه‌های مهندسی بزرگ مانند سدها، پل‌ها و ایستگاه‌های قدرت هسته‌ای است در نتیجه نیاز به نقشه برداری دقیق از گسل‌های موجود برای شناسایی هر گونه احتمال شکستن سطح زمین در طول مدت عمر سازه وجود دارد.

رانش زمین و بهمن

زلزله، همراه با طوفان شدید، فعالیت آتشفشانی، برخورد موج ساحلی، و آتش سوزی بزرگ، می‌تواند منجر به عدم ثبات شیب زمین و خطر بزرگی در زمین‌شناسی شود. خطر زمین لغزش حتی ممکن است در حالی که پرسنل اورژانس اقدام به نجات می‌کنند باقی بماند.

روانگرایی خاک

روانگرایی خاک یا شبیه به مایع عملکردن خاک وقتی رخ می‌دهد که، به خاطر تکان‌ها، دانه‌های مواد اشباع شده با آب (مانند شن و ماسه) به طور موقت استحکام خود را از دست داده و از شکل جامد به حالت روان تبدیل شوند. روانگرایی خاک می‌تواند ساختارهای سفت و سخت، مانند ساختمان‌ها و پل‌ها را، کج کند یا به ساختارهای فرورونده تبدیل کند. برای مثال، در زلزله ۱۹۶۴۴ آلاسکا، روانگرایی خاک باعث شد ساختمان‌های بسیاری در زمین فروروند و در نهایت به روی خود فرو بریزند.

رابطه گسل و زلزله

‌اصولاً گسل‌ها دارای توان لرزه‌ای نهفته و لرزه‌زا هستند و در صورت رها سازی انرژی ذخیره شده، زلزله‌های کوچک و بزرگی را به وجود می‌آورند. بدون تردید بین گسل و زلزله رابطه نزدیکی برقرار است و قسمت اعظم زلزله‌ها بر روی گسل‌های قدیمی متمرکز هستند. این مسئله هم در گسل‌های بزرگ و هم در گسل‌های کوچک تقریباً صادق است. اگر گسل قبل از وقوع زلزله موجود باشد، پس لرزه در ایجاد آن نقشی نداشته و در این صورت زلزله تنها در فعال سازی مجدد گسل دخالت می‌کند.

به طور کلی می‌توان ابراز داشـت کـه شکـستگی یـک گـسل موجـب شکـستگی گـسل دورتـر نمـی‌شـود و شکستگی یک گسل ممکن است موجـب تحـرک گـسل‌هـای منـشعب از خـود شـود. ولـی حتمـاً بـر روی گـسل‌هـای دوردست تأثیری ندارد. بررسی منا‌طق گسلی بعد از وقوع زمین لرزه نـشان مـی‌دهـد کـه مقـدار جابجـایی‌هـای حاصـل از زلزله از یک سانتی متر تا بیست متر تغییر می‌کند و هیچگاه زیاد‌تر از این حد نیست. پهنای منطقه تحت تأثیر ده‌ها تا صد‌ها متر و طول آن از یک تا هزار کیلو‌متر در نوسان است. اصولاً در یک زلزله، تمام منطقۀ گسلی شکسته نمی‌شود، بلکـه بعضی از بخش‌ها در هم می‌شکنند و در عوض بخش‌های دیگر مقا‌ومت می‌کنند.

رابطه گسل و زلزله دو طرفه است. وجود گسل‌های زیاد در یک منطقه جدید موجب بروز زلزلـه جدیـد اسـت. زلزلـه مزبور گسل جدیدی را بوجود می‌‌آورد و در نتیجه تعداد شکستگی‌ها زیاد‌تر شده و به این ترتیب قا‌بلیـت زلزلـه‌زایـی منطقه افزایش می‌یابد. ادغام و تر‌کیب گسل‌های کو‌چک در طی زمان به ساختمان اصلی گـسل‌هـا در مکـان مـرتـبط است.

‌گسل‌ها همیشه خسارت ومصیبت برای انسان به ارمغان نمی‌آورند، بلکه بعضاً اثرات مثبتی هـم بـه دنبال دارند. به عنوان مثال گسل‌ها در بسیاری از نقاط، عامل انتقال آب به سطح زمین بوده، لـذا پیـدایش برخـی آبادی‌ها و شهر‌ها‌ی امروزی در کنار گسل‌ها و همچنین وجود ذخایر معدنی ارزشمند را در محل گسل‌ها می‌تـوان ناشی از نقش مثبت گسل‌ها دانست.

بررسی‌ توان لرزه‌زایی گسل‌ها و برآورد تلفات انسانی ناشی از زلزله

ایران یکی از زلزله خیزترین کشورهای دنیا محسوب می‌شود و شهرهای آن در رابطـه بـا ایـن پدیده طبیعی آسیب‌های فراوان دیده است. برای کاهش آثار و پیامدهای ناگوار این پدیده نیاز به طراحی برنامه‌هایی برای کاهش میزان آسیب پـذیری شـهرها در برابـر زلزلـه اسـت، کـه مهمترین هدف این برنامه‌ها حفظ حیات و زندگی ساکنین است.

وجود گسل‌های پیرامونی و سابقه لرزه‌خیزی آنها می‌تواند سندی بـرای وقـوع زلزله در زمان‌های آتی باشد که به عنوان یک عامل تهدید کننده مطرح است. جهت مقابلـه اصولی با این پدیده و کاستن از میزان آسـیب‌هـای آن نیـاز بـه انجـام سلسـله مطالعـاتی در خصوص وضعیت لرزه‌خیزی و توان لرزه زایی گسل‌های فعال پیرامونی و تخمین میزان خسارت مالی و جانی به وجود آمده در اثر زلزله‌های احتمالی است تـا بـا روشـن شـدن وضـعیت لرزه‌خیزی و میزان آسیب‌ها، به بررسی عوامل آسیب زا و شناخت نقاط ضعفی که باعث تشدید آسیب‌ها می‌شود، پرداخت.

وجود یا عدم وجود گسل‌ها و شکستگی‌های زمین و فعالیت‌های اخیر آنها و جوان بودنشان از جمله شاخص‌هایی است که در فعالیت‌های آتی آن می‌تواند اثرگذار باشد. در واقع رابطه گسل – زلزله دو طرفه بوده، یعنی گسل‌های فراوان در یک منطقه سبب بروز زلزله می‌شود. زلزله نیز به نوبه خود سبب ایجاد گسل‌های جدیدی شده و در نهایت، تعداد شکستگی‌ها زیادتر شده و به این ترتیب قابلیت لرزه‌خیزی منطقه افزایش می‌یابد.

برآورد تلفات انسانی ناشی از زلزله

تعداد تلفات انسانی ناشی از زلزله، تابعی از شرایط تراکم جمعیت، نوع و کیفیت سازه‌ها، قـدرت، شـتاب، زمـان وقـوع زلزله و نحوه امدادرسانی بعد از وقوع آن است. تلفات انسانی ناشی از فروریزی ساختمان‌ها یک پدیـده کلـی در همـه مناطق زلزله‌زده مطرح است. بعد از رخداد زلزله‌های با قدرت تخریب بالا، آماری به عنوان تعداد تلفات انسـانی یـا تعـداد کشته‌ها منتشر می‌شود.

روش برآورد تلفات انسانی

مهمترین هدف برنامه‌های کاهش آسیب‌پذیری شهرها در برابر زلزله، حفظ حیات و زندگی ساکنین است. برای مطالعات تخمین آسیب، ارزیابی میزان احتمالی تلفات انسانی (مجروحان و مردگان) ناشی از زلزله ضروری است. معمولاً عمده‌ترین تلفات انسانی زلزله ناشی از آسیب وارده به ساختمان‌ها و سازه‌ها بوده و طبق برآوردهای انجام شده در زلزله‌های به وقوع پیوسته در جهان بالای ۷۵ درصد از مرگ و میرها در زلزله ناشی از ریزش مستقیم ساختمان‌ها بوده و اگر حوادث ثانویه زلزله را هم به آن اضافه کنیم بیش از ۹۰ درصد مرگ و میرها به ریزش ساختمان‌ها بر می‌گردد.

آسیب‌های به بار آمده در اثر‌ زلزله می‌تواند اثرات سوء زیادی در ابعاد مختلف زندگی جوامع داشته باشد. این اثرات گاهی ممکن است طی سالیان متمادی، زندگی این جوامع را دستخوش تغییرات اساسی نماید. از جمله ابزارهای نوین که توانایی زیادی در تحلیل داده‌های مکانی دارد سیستم اطلاعات جغرافیایی است که مطالعات مبنی بر ابزارهای آن، برآورد خطرات ناشی از زلزله در مناطق شهری را گسترش داده است. وقوع زلزله در مناطق شهری به دلیل شرایط پیچیده حاکم بر آن می‌تواند تبعات به مراتب ناگوارتری در پی داشته باشد. تبعاتی که با سرنوشت ساکنین آن می‌تواند در ارتباط کامل باشد. از این رو تمامی تلاش‌ها و مطالعات در ارتباط با زلزله هدفی جز بالا بردن ضریب ایمنی ساکنین مناطق شهری و روستایی‌ و متقابلاً کاهش تلفات، خسارت و زیان‌های اقتصادی ناشی از آن ندارد. از آنجایی که ارزیابی تمامی عوامل دخیل در آسیب‌پذیری شهر به طور یکجا امکان‌پذیر نیست.


منبع : عمران سافت

۰ نظر موافقین ۰ مخالفین ۰ ۱۸ بهمن ۹۶ ، ۱۹:۱۴
ش.م

آسیب پذیری سازه‌های زیر زمینی در زلزله

امروزه با پیشرفت فنآوری، سهولت نسبی در حفاری و ساخت سازه‌های زیرزمینی، محدودیت‌های فضاهای سطحی برای اجرای طرح‌های عمرانی و نیز به واسطه مسائل سیاسی و امنیتی، توجه بسیاری از کشورهای توسعه یافته و در حال توسعه به احداث سازه‌های زیر رمینی برای کاربری‌های عمرانی، نظامی و معدنی معطوف شده است. راه‌ها و بزرگراه‌های زیرزمینی، انواع تونل‌ها، شبکه متروی شهری، نیروگاه‌ها و سایر مغارهای زیر زمینی برای دفن زباله‌های هسته‌ای و یا به عنوان مخازن نفت، معادن، پناهگاه‌ها و انبارها، تعدادی از ساز‌ه‌هایی هستند که در کشورهای مختلف به سرعت در حال ساخت و اجرا هستند.

با توجه به توسعه روز افزون ساز‌ه‌های زیر زمینی و هزینه‌های فراوانی که برای ساخت هر یک از این سازه‌ها صرف میشود و نیز اهمیت آنها در شبکه حمل و نقل بین شهری و داخل شهری و خطری که در صورت آسیب دیدگی آنها متوجه جان مردم می‌شود، لازم است که پایداری آنها در برابر خطرات ناشی از زلزله مورد مطالعه قرار گیرد.

آسیب پذیری سازه‌های زیر زمینی در زلزله

ویژگی‌های فضاهای زیرزمینی و نمونه‌های بارز آنها

  • ‌تفوق محیط ساختاری به معنای وجود یک حصار و ساختار طبیعی فراگیر.
  • ‌عایق سازی با سنگ‌های فراگیر که دارای ویژگی‌های عالی عایق‌ها هستند.
  • محدودیت کمتر در احداث سازه‌های بزرگ به دلیل نیاز کمتر به استفاده از وسایل نگهداری عمده در مقایسه با احداث همان سازه بر روی سطح زمین.
  • کمتر بودن تأثیرات منفی زیست محیطی.

از دیگر مزایای تونل‌ها در راه‌های ارتباطی می‌توان به موارد زیر اشاره کرد‌.

  • کوتاه‌تر شدن مسیرها و افزایش راند‌مان ترافیکی
  • بهبود مشخصات هندسی مسیر
  • جلوگیری از خطرات ریزش کوه و بهمن
  • ایمنی بیشتر در برابر زلزله

مطالعه خرابی‌های گذشته

بر اساس یک پندار کهن، سازه‌های زیر زمینی ایمن‌ترین سازه‌ها در برابر زلزله هستند. در تمام نقاط جهان خطوط متروی زیر زمینی به عنوان پناهگاه برای نجات واسکان در زمان وقوع زلزله مورد استفاده قرار گرفته‌اند. برای اثبات صحت و سقم این پندار، لازم است عملکرد تونل‌ها و سازه‌های زیر زمینی در برخی از کشورهای پیشرفته در طول قرن گذشته مورد مطالعه و بررسی قرار بگیرد. در کشور ژاپن تونل‌های بسیاری احداث شده است، از این رو از دیدگاه تونل‌سازی در زمره پیشرفته‌ترین کشورها قرار دارد. با توجه به شدت زلزله خیز بودن ژاپن و اهمیتی که پدیده زلزله در آن کشور دارد، گزارش‌های متعددی در زمینه صدمات وارده بر تونل‌ها در اثر زلزله در این کشور منتشر نمود‌ه‌اند.

تعاریف مربوط به زلزله

از نظر زلزله شناسی، زلزله دارای مفاهیم و خصوصیات متعددی از جمله کانون زلزله، شدت و بزرگی زلزله و … است که بررسی هر کدام در جای خود مهم است.اما در اینجا به مشخصات تاثیر گذار عمده و مفاهیم کلیدی مربوط به بحث اشاره می‌شود و تاثیر هر کدام از پارامترها در رفتار ساز‌ه‌های زیر زمینی مورد بررسی قرار می‌گیرد.

امواج زلزله

انرژی آزاد شده در زلزله، بصورت امواج در زمین منتقل گردده و باعث تحریک ساز‌ه‌های دور از کانون زلزله می‌شود. بررسی این امواج بصورت کلی، امری ‌بسیار دشوار است که در عمل برای سهولت، امواج به یک‌سری امواج ساده‌تر تجزیه میشود. امواج زلزله از نوع امواج الاستیک هستند و بر حسب کرنش ایجاد کننده به دو نوع حجمی (مانند امواج فشاری و برشی) و سطحی (مانند امواج لاو و ریلی) تقسیم می‌شوند.

بر اساس مشاهدات، قدرت و توان هر کدام از امواج کاملاً وابسته به بزرگای زلزله، فاصله بین رو مرکز و ساختگاه و مشخصات خاک در این فاصله
است. از طرف دیگر امتدادهای مختلف برخورد موج با امتداد اصلی تونل سبب ایجاد تغییر شکل‌های مختلفی در سازه میشود.

بیشینه شتاب زمین

از معیارهای مهم در طراحی و علت اصلی آسیب‌ها، بیشینه شتاب سطح زمین در هنگام زلزله است که بر اساس ضریبی از g شتاب جاذبه زمین سنجیده می‌شود. علاوه بر این، معیارهای دیگری از جمله بیشینه سرعت ذر‌ه‌ای در سطح زمین نیز در تعیین میزان خرابی‌ها تعریف شده‌اند. بطور کلی بررسی‌ها نشان می‌دهند که اگر شتاب سطحی بیشینه تا ۰/۲g باشد، آسیبی به تونل وارد نمی‌شود و چنانچه این شتاب بین ۰/۲g تا ۰/۵g باشد، صدمات خفیف و قابل تعمیر را شاهد خواهیم بود و از شتاب ۰/۵g به بالا انتظار آسیب‌های شدیدتری خواهد بود.

فرکانس و طول موج زلزله‌

نزدیک بودن فرکانس ارتعاش سازه به فرکانس مولد ارتعاش، سببپدیده تشدید میشود. تحقیقات نشان می‌دهند که امواج زلزله دارای فرکانس
کم و طول موج زیاد هستند. هر چه اندازه طول موج برخوردی به تونل نزدیک به قطر تونل باشد (حداکثر تا ۴ برابر قطر تونل)، امکان تقویت نوسان وجود دارد، بطوری که طول موج تا دو برابر قطر تونل می‌تواند موجب آسیب‌هایی به تونل شود. اگر تونلی به قطر ۱۰ متر و در محیط ماسه سنگی که سرعت موج در آن ۱/۸ کیلومتر بر ثانیه است، در نظر گرفته شود، با فرض برخود موجی که دو برابر قطر تونل، طول موجش است، مقدار فرکانس لازم برای تحریک سقف  به ریزش برابر ‌با ۹۰ هرتز است. که تولید این فرکانس برای زلزله‌های متداول ممکن نیست. مگر اینکه تونل به کانون زلزله و محل وقوع گسیختگی گسل بسیار نزدیک باشد و شاید فقط در انفجارهای عظیم امکانپذیر باشد.

فاصله از مرکز زلزله‌

بدیهی است که هر چقدر تونل از مرکز زلزله فاصله می‌گیرد، امکان آسیب کمتر می‌شود. توجه به این نکته لازم است که در فرکانس‌های پایین، میرایی دامنه نوسان‌ها شدیدتر است بطوری که افت انرژی در امواج حجمی متناسب با عکس مجذور فاصله و در امواج سطحی متناسب با عکس فاصله است‌.

دوام نوسان‌ها

عموماً پدیدۀ زلزله دارای فرکانس‌های کم و تعداد سیکل‌های تنش زیاد است. تعداد دفعات نوسان سازه‌ به خصوص آن تعدادی که سازه را وارد محدودۀ غیرخطی می‌‌کند، عامل بسیار مهمی در بالا رفتن میزان آسیب‌های وارده به تونل است. دوام و تعداد زیاد نوسان‌ها باعث پدیده خستگی‌ (Fatigue) می‌شود و این پدیده موجب تغییر شکل‌های بزرگ در اطراف تونل میشود.

گسلش

گسلش از ویژگی‌های زلزله به شمار نمی‌رود، و در واقع عامل ایجاد کننده زلزله است. در حوزه‌های مختلف مهندسی عمران و ساخت و ساز و در مطالعات آسیب پذیری شهری، بدلیل محدود بودن ابعاد ساز‌ه‌ها و احتمال بسیار کم تقاطع این سازه‌ها با خط گسلش، این قسمت از اهمیت زیادی برخوردار نیست. ولی در حوزه تونل سازی، بدلیل ویژگی اصلی این سازه‌ها که طولانی بودن آنها است، احتمال تقاطع این سازه‌ها با محل گسلش، بسیار زیاد و تقریباً امری اجتناب ناپذیر است. بدلیل اهمیتی که گسلش در امر تونل سازی دارد، این موضوع بصورت جداگانه مورد بررسی قرار خواهد گرفت.

تاثیر گسلش بر تونل‌ها

گسلش یکی از عواملی است که می‌تواند در هنگام وقوع زلزله خسارات زیادی را به سازه‌های زیر زمینی و بخصوص سازه‌های خطی زیر زمینی وارد نماید.

اهمیت مطالعه گسلش در طراحی سازه‌های زیر زمینی

جابجائی برشی در یک پهنه باریک در دو طرف گسل آثار تخریبی شدیدی بر روی سازه‌های زیر زمینی خواهد داشت. تنش‌های حاصل از گسلش در مقاطع تونل یا سایر سازه‌های زیر زمینی می‌تواند به مراتب از تنش‌های حاصل از لرزش و لغزش بیشتر باشند. طراحی تونل‌ها به نحوی که بتواند در برابر جابجایی‌های چند سانتیمتری تا چند متری ناشی از گسلش مقاومت کنند، نیز از نظر اقتصادی مقرون به صرفه نیست. بدین لحاظ مطالعه خطر گسلش در مسیر یک تونل و ‌سایر سازه‌های زیر زمینی از اهمیت خاصی برخوردار است.

در واقع بسیاری از ساز‌ه‌های زیر زمینی و بخصوص تونل‌ها دارای تقاطع‌هایی با گسل‌ها هستند که این امر باعث آسیب پذیری آنها بر اثر حرکت گسل
میشود. به همین جهت در حین بررسی‌های ساختگاه برای ساخت سازه‌های زیرزمینی باید به وجود گسل‌ها توجه خاصی مبذول شود تا بتوان با شناخت کامل آنها، پیش گیری‌های لازم را در جهت کاهش میزان صدمات ناشی از گسلش انجام داد. در این راستا، نه تنها مکان گسل‌های فعال باید دقیقاً شناسایی شوند، بلکه باید نوع گسل و نحوه حرکت آن، نحوه حرکت گسل در گذشته، نحوه انتخاب رویداد مناسب برای طراحی و اهمیت و یا تاثیر گسلش در کاربری سازه زیر زمینی نیز دقیقاً بررسی شود. بررسی نوع گسل نحوه حرکت آن را در جهات افقی یا قائم و یا هر دو، مشخص می‌کند. جابجائی گسل میزان حرکت آن را در جهات مختلف نشان می‌دهد. رویدادهای تاریحی می‌توانند برای پیش‌بینی نوع حرکت، میزان جابجائی و زمان احتمالی گسلش در آینده مورد استفاده قرار گیرند و انتخاب رویداد مناسب نیز می‌تواند امکان طراحی بهینه و اقتصادی سازه را فراهم آورد.

همچنین تاثیر گسلش بر کاربری طرح باید به دقت مشخص شود. به عنوان مثال، در تونل‌های راه آهن حساسیت زیادی در برابر جابجائی وجود دارد. زیرا، امکان قطع شدن ریل‌ها یا مختل شدن سیستم آنها به واسطه جابجائی حاصل از گسلش وجود دارد و این امر می‌تواند حوادث ناگواری را بوجود آورد. در مقابل در تونل‌های انتقال آب حتی اگر جابجائی قابل توجهی نیز رخ دهد، خطر جانبی به همراه نخواهد داشت و سیستم انتقال آب نیز می‌تواند با مقداری تفاوت دبی به کار خود ادامه دهد.

انواع جابجایی‌های گسلی

معمولاً جابجایی گسل‌ها به سه شکل نرمال، معکوس و امتداد لغز‌ انجام می‌شود.‌ در نوع امتداد لغز، جابجائی افقی و در دو نوع دیگر جابجایی قائم است‌. البته معمولاً در طبیعت، حالات ترکیبی از این حرکات مشاهده می‌شود و به ندرت می‌توان گسلی را یافت که صرفاً در جهت افقی یا قائم حرکت کند.

روش‌های کاهش صدمات ناشی ار گسلش روی تونل‌ها و ساز‌ه‌های زیر زمینی

معمولاً طراحی تونل‌ها یا سایر سازه‌های زیر زمینی به گونه‌ای که بتوانند در برابر گسلش مقاومت نمایند، اقتصادی نیست. لذا سعی می‌شود که با تعیین محل دقیق گسل‌ها با روش‌های زمین شناسی و ژئوفیزیکی از برخورد تونل‌ها با آنها ممانعت به عمل آید. این عمل بخصوص در نواحی فعال زمین ساختی در مورد سازه‌های خطی نظیر تونل‌ها که حداقل صدها متر طول دارند، مشکل است.

چنانچه امکان دوری از گسل مقدور نباشد، معمولاً با قبول مقداری جابجایی در مقطع تونل سعی می‌شود که در محل برخورد تونل با گسل، اتصالاتی تعبیه شود تا صدمات را به حداقل ممکن کاهش دهد و امکاناتی نیز برای بازسازی سریع در نظر گرفته شود.

بدین منظور می‌توان با استفاده از نقاط ضعف عمدی در تونل (نظیر درزه‌های ساختمانی و … ) صدمات را در قسمت‌های خاصی متمرکز نمود. روش دیگر
کاهش صدمات ناشی از گسلش در تونل‌ها، افزایش سطح مقطع در محل تقاطع با گسل است. در این مورد در محل برخورد تونل و گسل سطح مقطع را با اندازه جابجائی قابل انتظار بر اثر گسلش بزرگتر در نظر می‌گیرند و قسمت اضافی را با سنگ ریزه پر می‌کنند. چنانچه گسلش اتفاق افتد سطح مقطع حاصله برابر با سطح مقطع مفید مورد نظر است. ‌

تاثیر ارتعاشات زلزله بر تونل‌ها

آسیب پذیری سازه‌های زیر زمینی در برابر زلزله هم می‌تواند به واسطه گسیختگی زمین در هنگام وقوع زلزله و هم به دلیل ارتعاشات ناشی از زلزله روی دهد. گسیختگی زمین در هنگام وقوع زلزله عمدتاً شامل گسلش، زمین لغزش و روانگرایی است. ‌ بجز گسلش، زمین لغزش و روانگرایی نیز از پدیده‌های طبیعی ناشی از زلزله است. زمین لغزش‌ها که معمولاً توسط زلزله تحریک میشوند، بخصوص در ورودی – خروجی تونل‌ها می‌توانند صدمات زیادی را به فضاهای زیر زمینی وارد نمایند. بسیاری از گزارشات مربوط به آسیب فضاهای زیر زمینی در اثر زلزله، به واسطه ایجاد لغزش در مدخل‌های تونل‌ها بوده‌اند. روانگرایی نیز بخصوص چنانچه فضای زیر زمینی در رسوبات سست دارای درصد بالای ماسه و سیلت احداث شده باشد، می‌تواند صدمات زیادی را به فضای زیر زمینی وارد نماید. این آسیب‌ها بیشتر در رابطه با تونل‌های مترو در نواحی شهری که از رسوبات منفصل عبور می‌کنند دیده شده است.

اهمیت مطالعه ارتعاشات زلزله

هر چند که گسیختگی زمین در اثر گسلش، روانگرایی و زمین لغزش می‌تواند اثرات ویرانگری را بر سازه‌های زیر زمینی وارد نماید، ولی صدمات ناشی از
ارتعاشات زلزله به دلایل زیر به مراتب مهمتر از این صدمات هستند.

  • صدمات ناشی از گسیختگی (نظیر گسلش یا زمین لغزش) در نواحی ‌خاصی اتفاق می‌افتند که می‌توان با مطالعات دقیق زمین شناسی مهندسی از قبل این نواحی را شناسایی نموده و تمهیداتی را در آنها در نظر گرفت. ولی ارتعاش می‌تواند در اثر جنبش هر گسلی در فواصل دور یا نزدیک به فضای زیر زمینی ایجاد شود و شدت آن نیز می‌تواند بسیار متغیر باشد.
  • ارتعاش منحصر به قسمت خاصی از تونل یا فضای زیر زمینی نمی‌شود و خسارات حاصله در کل مسیر تونل یا فضا می‌تواند ایجاد شود ولی گسلش یا زمین لغزش (و تا حدودی روانگرایی) در قسمت‌های محدودی از مسیر اثر می‌گذارند و به کل سیستم آسیب نمی‌رسانند.
  • ارتعاشات ناشی از زلزله می‌تواند به شکل امواج مختلف طولی، عرضی یا ‌برشی فضای زیر زمینی را تحت تاثیر قرار دهند و لذا تغییر شکل‌های گوناگونی در مقاطع یا ساز‌ه‌های زیر زمینی در اثر ارتعاش امکان وقوع دارد. امواج اولیه یا p که به موازات محور طولی تونل یا سازه زیر زمینی انتشار می‌یابند، تونل را در جهت طولی دچار فشار یا کشش می‌کنند که می‌تواند باعث ایجاد ترک‌های کششی یا خرد شدگی‌های فشاری در  امتداد آن شود.
  • امواج برشی یا s که بخش اصلی انرژی را انتقال می‌دهند، چنانچه در جهت طولی تونل انتشار یابند باعث ارتعاش در جهت عمود بر محور تونل شده و یا ایجاد جابجایی‌های برشی، آسیب‌های زیادی را به فضای زیر زمینی وارد می‌کنند. چنانچه جهات برخورد این امواج با تونل مایل یا عمود بر محور تونل باشد، باز هم اشکال دیگری از تغییر مکان در فضای زیر زمینی ایجاد میشود. در حالی که گسیختگی‌های ناشی از گسلش یا زمین لغزش معمولاً جهت تغییر شکل از بررسی‌های ساختگاهی قابل پیش‌بینی است.

بررسی تغییر شکل‌های ایجاد شده در تونل

تغییر شکل محوری با کرنش‌های فشاری و کششی همراه است و همراه با عبور موج در طول محور تونل یا فضای زیر زمینی جابجایی انجام می‌گیرد. تغییر شکل‌های انحنایی باحث ایجاد انحناهای مثبت و منفی در امتداد تونل میشوند.در انحنای مثبت جدار فضای زیر زمینی در قسمت فوقانی دچار فشردگی و در قسمت تحتانی دچار کشیدگی می‌شود. تغییر شکل‌های حلقه‌ای نیز در اثر برخورد امواج به صورت عمودی یا تقریباً عمودی نسبت به محور تونل یا فضای زیرزمینی ایجاد میشود. این حالت تنها زمانی که طول موج لرزه‌ای کمتر از شعاع فضای زیر زمینی باشد، ایجاد می‌شود.

تغییر شکل‌های محوری و انحنایی

تنش‌های دینامیکی حاصل از امواج لرزه‌ای به تنش‌های استاتیکی موجود در جدار تونل یا فضای زیر زمینی و سنگ‌های مجاور آن افزوده میشوند. در
اثر افزایش تنش‌های فشاری حاصل از بارگذاری دینامیکی امکان ایجاد خرد شدگی و حالت پوسته شدن (Buckling) در محیط فضای زیر زمینی وجود دارد. تنش‌های لرزه‌ای کششی باعث کاهش تنش‌های استاتیکی فشاری موجود در محل شده و این خود ایجاد تنش‌های کششی می‌نماید که نتیجه آن باز شدن درز‌ه‌ها و در نتیجه کاهش مقاومت برشی، سست شدن پیچ سنگ‌ها‌ (Rock bolts) و نهایتاً ریزش سنگ از سقف یا جدار‌ه‌های تونل است.

برای تعیین تغییر شکل‌های محوری و انحنایی می‌توان از مدل‌های یک بعدی استفاده نمود. شاید ساده‌ترین راه بدین منظور در نظر گرفتن تونل به عنوان یک تیر سازه‌ای و انجام تحلیل‌های مربوطه روی آن باشد. اما برای مغاره‌ها یا تونل‌های بزرگتر لازم است از مدل‌های سه بعدی جهت برآورد این تغییر
شکل‌ها استفاده نمود. روابط زیر می‌توانند جهت تخمین تنش‌های میدان آزاد بکار روند.

بررسی رفتار لرزه‌ای سازه‌های مدفون در رسوبات منفصل

مهمترین فرضی که برای تحلیل رفتار سازه‌های مدفون در رسوبات منفصل انجام می‌شود این است که خاک در مقایسه با سازه زیر زمینی صلب است و لذا تغییر شکل حاصل از زلزله در خاک به فضای زیر زمینی منتقل می‌شود و سازه هماهنگ با زمین اطرافش حرکت می‌کند. با توجه به اینکه معمولاً در اثر زلزله تغییر شکل‌های مختلفی در جهات مختلف بصورت تصادفی ایجاد می‌شود لذا امکان مقاوم‌سازی سیستم جهت مقابله با این تغییر شکل‌ها بسیار دشوار بوده و در بسیاری موارد امکان پذیر نیست. از طرفی صلبیت بیش از حد سازه زیر زمینی تنها آسیب پذیری آن را در برابر زلزله افزایش می‌دهد و لذا معمولاً در طراحی سازه‌های زیر زمینی لازم است که سیستم به صورت انعطاف پذیر و دارای قطعات شکل پذیر طراحی شود به شرطی که پایداری استاتیکی آن به مخاطره نیفتد.

همچنین لازم است به مسایلی نظیر امکان تشدید و اثر اندر کنش سازه با محیط اطراف نیز توجه نمود. این عوامل می‌توانند باعث افزایش جنبش‌های لرزه‌ای شوند. اندر کنش خاک – سازه در ساز‌ه‌های زیر زمینی اثرات مهمی دارد، اما اگر سازه طوری طراحی شود که سیستم از جنبش زمین تبعیت کند، آنگاه اثر اندر کنش به حداقل کاهش می‌یابد. در بسیاری از معیارهای طراحی فضاهای زیر زمینی در رسوبات منفصل سعی می‌شود اثر اندر کنش با طراحی سیستم به نحوی که سیستم از جنبش‌های زمین تبعیت کند، خنثی شود اما اگر فضای زیر زمینی در خاک خیلی سست احداث شده باشد، اثر اندرکنش نسبتاً زیاد است و باید مورد توجه قرار گیرد.

عامل دیگری که در رفتار فضاهای زیر زمینی در برابر ارتعاش حاصل از زمین لرزه حائز اهمیت است زاویه برخورد امواج با جدار تونل است. امواج لرز‌ه‌ای به سازه‌های خطی نظیر تونل‌ها می‌توانند با زوایای مختلفی برخورد کنند و هر چه (به واسطه کاهش زاویه برخورد موج با تونل) طول تحت تاثیر قرار گرفته تونل بیشتر باشد، دامنه تغییر مکان زمین کاهش می‌یابد.

زاویه برخورد موج با تونل اثر قابل توجهی در مقادیر انحنا و خمیدگی تونل و در نتیجه در تغییر شکل تونل هنگام وقوع زلزله دارد.

انواع تغییر شکل‌های لرزه‌ای خاک

دو نوع تغییر شکل عمده حاصل از زلزله می‌‌تواند روی سیستم‌های حمل و نقل زیر زمینی تاثیر نماید که عبارتند از تغییر شکل‌های انحنایی و تغییر شکل‌های برشی. تغییر شکل‌های انحنایی در اثر قرارگیری مستقیم محل انحنای خاک (حاصل از زلزله) روی سازه زیر زمینی بوجود می‌آید. سازه زیر زمینی باید ظرفیت جذب کرنش‌های حاصله را داشته باشد. تغییر شکل برشی نیز نشان‌دهنده تاخیر زمانی در پاسخ به یک شتاب پایه وارده به آن از سنگ بستر است. این حالت را می‌توان به حرکت یک کاسه ژله در پاسخ به تکان ظرف آن تشبیه نمود. اثر این حرکت تغییر شکل مقطع مستطیلی فضا به شکل لوزی است.

باید توجه داشت که هرچند دامنه جابجائی زلزله می‌تواند زیاد باشد ولی در سازه‌های زیر زمینی خطی نظیر تونل‌های مترو، این جابجایی در طول نسبتاً زیادی انجام می‌شود و لذا نرخ بهم ریختگی حاصل از زلزله معمولاً کم و در حد تغییرشکل‌های الاستیک قرار می‌گیرد.


منبع : عمران سافت

۰ نظر موافقین ۰ مخالفین ۰ ۱۸ بهمن ۹۶ ، ۱۹:۱۰
ش.م

ارزیابی عملکرد لرزه‌ای سیستم ترکیبی سری میراگر جرمی و  ستون مایع

در سال‌های اخیر به توسعه وسائل مؤثر در استهلاک انرژی لرزه‌ای در سازه‌ها اهمیت بیشتری داده شده است که پاسخ سازه اصلی را در ناحیه الاستیک نگه دارند. به این منظور، میراگرها برای کم کردن اثر نیروی زلزله به سازه‌ها استفاده می‌شوند‌. همچنین تکنولوژی‌هایی برای استهلاک انرژی لرزه‌ای با قرار دادن جرم کمکی توسعه پیدا کرده است. گروه مهمی از این سیستم‌ها، سیستم‌های کنترل غیر فعال‌اند که بدون نیاز به هیچ گونه منبع انرژی خارجی و فقط با استفاده از حرکت سازه، ارتعاشات لرزه‌ای را کاهش می‌دهند.

ارزیابی عملکرد لرزه‌ای میراگر جرمی و ستون مایع

عملکرد سیستم‌های ترکیبی سری با سیستم تک میراگر ستون مایع مقایسه شده و همچنین کارایی سیستم‌های ترکیبی سری با افزایش ضریب افت هد بررسی شده است. نتایج حاکی از آن است که عملکرد سیستم ترکیبی سری وابسته به مشخصات زلزله‌های مختلف، فرق می‌کند و با افزایش نسبت جرمی جرم دوم و نیز با انتخاب نسبت فرکانسی بهینه بر اساس پاسخ‌ها، کارایی میراگر ترکیبی سری افزایش می‌یابد.

در این روش‌های کنترل، با شروع تحریک (مثلاً زلزله)، سیستم کنترلی به کار افتاده و عملکرد کنترلی خود (اعم از تغییر سختی، پریود، میرایی یا جرم‌) را در هنگام تحریک انجام می‌دهد که پس از خاتمه تحریک دوباره غیر فعال می‌شود. این گونه سیستم‌ها به دلیل ثابت بودن خواص دینامیکی از جمله سختی، میرایی، جرم (و در نتیجه فرکانس طبیعی)، به فرکانس و دامنه تحریک ورودی سازه حساس بوده و ممکن است موجب کاهش بازده آنها برای تحریک‌هایی مثل زلزله که لرزش ورودی به دقت قابل پیش بینی نیست، بشود‌. روش‌ها‌یی مانند ترکیب این سیستم‌ها به منظور کاهش این حساسیت ابداع و به کار گرفته شده است و هم اکنون در بسیاری از کشورها سازه‌های زیادی به روش غیرفعال کنترل ارتعاش می‌شوند‌.

سیستم‌ها به منظور کاهش این حساسیت ابداع و به کار گرفته شده است و هم اکنون در بسیاری از کشورها سازه‌های زیادی به روش غیرفعال کنترل ارتعاش می‌شوند‌. از بین سیستم‌های غیرفعال، میراگر جرمی تنظیم شده یک دستگاه جذب کننده انرژی غیرفعال متشکل از یک جرم، یک فنر و یک میراگر ویسکوز است که به سازه برای کاهش ارتعاش اضافه می‌شود.

از بین سیستم‌های غیرفعال، میراگر جرمی تنظیم شده یک دستگاه جذب کننده انرژی غیرفعال متشکل از یک جرم، یک فنر و یک میراگر ویسکوز است که به سازه برای کاهش ارتعاش اضافه می‌شود. میراگرهای جرمی تنظیم شده در کاهش پاسخ سازه‌ها تحت بار هارمونیک یا تحریک باد و زلزله مؤثر است. میراگرهای جرمی بر اساس مودهای اصلی (مود اول) سازه‌ها تنظیم می‌شوند‌. تنظیم دقیق و صحیح میراگر جرمی متناسب با سازه و زلزله یکی از مهمترین پارامترها در طراحی است که تنظیم نادرست‌، کارائی میراگر جرمی را کاهش می‌دهد.

با افزایش نسبت جرمی، نسبت فرکانسی کاهش و نسبت میرایی افزایش می‌یابد. همچنین در نسبت جرمی یکسان، با افزایش نسبت جرمی نسبت فرکانسی کاهش و نسبت میرایی افزایش می‌یابد.

میراگر ستون مایع تنظیم شده شامل یک لوله u یا v شکل با سطح مقطع ثابت است که در داخل این لوله سیال وجود دارد. انرژی ارتعاش از سازه
به سیال داخل میراگر ستون مایع تنظیم شده منتقل شده و به وسیله‌ی نیروی بازگشتی ثقلی سیال و مکانیزم‌های افت هد هیدرودینامیکی مانند‌ اصطکاک، روزنه‌، زانویی‌ مستهلک می‌شود. فرکانس پایه این میراگر تنها به طول ستون مایع وابسته است، در حالی که میرایی از طریق جریان آب از روزنه‌ها ایجاد می‌شود. برخلاف میراگرهای جرمی، پاسخ میراگرهای ستون مایع تنظیم شده به واسطه روزنه‌ها و تأثیر میرایی غیرخطی در معادله حرکت سیال در لوله، غیرخطی است.

میراگر ترکیبی ستون مایع می‌تواند برای مدت زمان طولانی، به طور قابل توجهی مؤثرتر از میراگر ستون مایع باشد در حالی که تنها مقدار کمی از تلاش کنترلی برای تنظیم روزنه نیاز است. تحت شرایط لرزه‌ای، میراگر ستون مایع ترکیبی با کنترل روزنه می‌تواند در میرایی سریع پاسخ دوم سازه مؤثر باشد. به علاوه، اگر سیستم کنترل فشار اضافه شود، پاسخ اولیه سازه نیز می‌تواند کاهش پیداکند.

نکته مهم در طراحی میراگر ستون مایع تنظیم شده، تنظیم دقیق فرکانس و ضریب افت هد است. هر چه ضریب افت هد بیشتر در نظر گرفته شود راندمان میراگر در کاهش پاسخ‌ها افزایش پیدا می‌کند‌. برای طراحی میراگرهای جرمی تنظیم شده، ابتدا نسبت جرمی انتخاب می‌شود. سپس مقادیر نسبت فرکانسی و میرایی با استفاده از روابط ارائه شده در پژوهش‌های گذشته تعیین شده سپس مقادیر سختی و میرایی میراگر جرمی تنظیم شده محاسبه می‌شود.

سیستم ترکیبی سری میراگر جرمی ستون مایع تنظیم شده در کاهش پاسخ‌های سازه مؤثرند‌. مهم‌تر‌ین پارامترها در طراحی میراگرهای جرمی و ستون مایع، تنظیم دقیق فرکانس متناسب با سازه و زلزله است‌. کارایی میراگر با تنظیم نامناسب یا غیر بهینه کاهش می‌یابد. ‌



منبع : عمران سافت


۰ نظر موافقین ۰ مخالفین ۰ ۱۸ بهمن ۹۶ ، ۱۹:۰۵
ش.م

دیوار برشی فولادی

دیوار برشی فولادی صفحه فولادی نوعی سیستم جدید مقاوم در برابر بارهای جانبی بوده که نسبت سایر سیستم‌های مقاوم در برابر بار جانبی دارای عملکرد بهتری است. در این سیستم نیروهای جانبی توسط دیافراگم‌های کف طبقات به صورت افقی به صفحه، تیر و ستون‌های این نوع دیوار متقل می‌شود. قاب فولادی محیطی هر صفحه ممکن است دارای اتصال تیر به ستون به صورت ساده (مفصلی) یا ممان گیر (گیردار) باشد. همچنین صفحه می‌تواند با سخت کننده یا بدون آن باشد. علاوه بر این، صفحه ممکن است توسط پیچ و یا جوش به قاب محیطی‌اش متصل شود.

کاربرد دیوار برشی در بهسازی لرزه‌ای

مزایای سازه‌ای دیوار برشی فولادی

  • عملکرد موثر در کنترل تغییر مکان جانبی به دلیل سختی نسبتاً بالا
  • کاهش بار زلزله وارد شده به سازه به دلیل وزن سبک سیستم در مقایسه با دیوار برشی بتنی
  • اشغالی تعداد دهانه‌های کمتری نسبت به سازه‌های مهاربندی و دیوار برشی بتنی
  • سرعت اجرای سیستم و کنترل دقت اجار به مراتب بالا با توجه امکان ساخت قطعات این سیستم در کارخانه و نصب آن در محل
  • استفاده از مصالح یکسان (فولاد) در ساخت دیوار برشی و قاب‌های فولادی مجاور

طراحی دیوارهای برشی بتنی

این سیستم می‌تواند یکی از انواع سیستم قاب ساختمانی ساده با دیوار برشی متوسط یا ویژه و یا سیستم دوگانه با قاب خمشی و دیوار برشی متوسط و یا ویژه انتخاب شود. بدیهی است در صورت انتخاب سیستم دوگانه، الزامات مربوطه بایستی مطابق ضوابط آئین نامه رعایت شود. لازم به ذکر است استفاده از دیوار برشی معمولی مطابق آئین نامه بارگذاری آمریکا (ASCE 7-10) برای نواحی با خطر لرزه خیزی متوسط و بالاتر مجاز نیست.

با توجه به عدم شناخت مناسب در مورد ترکیب سیستم‌های مختلف لرزه‌ای، در ساختمان‌های فولادی ترکیب دیوار برشی بتنی با سیستم‌های دیگر لرزه‌بر جانبی مانند مهاربندی در یک راستا مجاز نیست. همچنین توصیه می‌شود سیستم لرزه بر مورد استفاده در هر دو راستا یکسان انتخاب شود.

به عنوان توصیه کلی از قرار دادن دیوارهای برشی بتنی در محل‌هایی که دیوار در طول خود با دیافراگم سقف درگیر نبوده، نظیر کنار بازشوهای سقف (پله یا نورگیر)، اجتناب شود. همچنین حداقل از ۰ و ترجیحاً ۳ دیوار برشی با طول مناسب در هر راستا استفاده شود.‌ همچنین توصیه می‌شود از اجرای دیوارهای متقاطع L و U و T شکل بدلیل ابهام در قسمت نواحی مرزی و مدلسازی آن خودداری شود.

بهسازی لرزه‌ای‌ ساختمان فولادی

استفاده از دیوار برشی فولادی در سال‌های اخیر در ساختمان‌های نوساز و در مقاوم سازی ساختمان‌های موجود مورد توجه واقع شده است. این سیستم دارای سختی مناسب برای کنترل تغییر شکل سازه و همچنین دارای مکانیزم شکست شکل پذیر و اتلاف انرژی بالا است. سختی و اتلاف انرژی دیوار برشی فولادی بهتر از دیوارهای برشی بتنی و اجرای آنها در یک ساختمان در حال بهره برداری بسیار ساده‌تر است.

دیوارهای برشی فولادی به عنوان سیستم مقاوم جانبی از سال ۱۹۷۰ در ساختمان‌های مهمی در کشورهای ژاپن و آمریکا مورد استفاده قرار گرفته‌اند. دو مورد از این ساختمان‌ها از جمله یک ساختمان اداری ۳۵ طبقه، تحت زلزله‌های شدید قرار گرفته و خسارت سازه‌ای بسیار کمی را متحمل شده‌اند. تکنولوژی طراحی و ساخت دیوار برشی فولادی طی سال‌های اخیر پیشرفت چشمگیری داشته است و ضوابط طرح و اجرای آن در آیین نامه‌های مختلف مانند آیین نامه فولاد کانادا، آیین نامه لرزه‌ای AISC و ضوابط FEMA 450 وارد شده است.

سیستم دیوار برشی فولادی شامل پانل‌های صفحه‌ای فولادی، دو ستون مرزی و تیرهای افقی کف است. رفتار این سیستم شباهت زایدی به یک تیر ورق طره دارد. ستون‌ها مانند بال تیر ورق، پانل‌های دیوار مانند جان تیر ورق و تیرهای کف مانند سخت کننده‌های عرضی جان تیر ورق عمل می‌کنند. با طراحی مناسب این سیستم شکل پذیری و اتلاف انرژی بالایی را دارا است. همچنین سختی قابل ملاحظه آن به کنترل تغییر شکل طبقات و در نتیجه پایداری سازه از یک سو و رفتار مناسب اجزای غیر سازه‌ای از سوی دیگر منجر می‌شود.

مکانیزم مناسب برای خمیری شدن سیستم دیوار برشی، جاری شدن جان آن است. در کاربردهای اولیه پانل‌های دیوار دارای سخت کننده‌های افقی و عمودی بودند. تحقیقاتی که در حالت بدون سخت کننده روی رفتار این پانل‌ها انجام گرفت، نشان داد که در این حالت نیز شکل پذیری و اتلاف انرژی قابل ملاحظه‌ای وجود دارد و در سال‌های اخیر استفاده از پانل‌های بدون سخت کننده از لحاظ اجرایی و اقتصادی مقبولیت بیشتری در کشورهای آمریکا و کانادا یافته است.

طرح بهسازی لرزه‌ای ساختمان

با بررسی‌های انجام شده روی سازه ساختمان حتی با اعمال فرضیات خوش بینانه و بهره گیری از تمام پتانسیل‌های موجود سازه ضعف‌های عمده ساختمان در تحمل نیروهای حاصل از زلزله در سطوح خطر مختلف و لزوم بهسازی آن به اثبات رسید. عمده‌ترین بخش طرح بهسازی افزون سیستم باربر جانبی مناسب طبق اصول و ضوابط آیین نامه به طبقات ساختمان است.

با توجه به محدودیت‌های اجرایی‌، به منظور کاهش عملیات اجرایی زمان مورد نیاز و ایجاد کمترین توقف در بهره برداری از ساختمان سعی می‌شود با استفاده از سیستم‌هایی که تواماً سه ویژگی سختی‌، مقاومت و شکل پذیری را دارا است. طرح بهسازی، در کمترین تعداد دهانه اجرا شود. در راستای طولی استفاده از مهاربندهای برون محوری EBF پیشنهاد می‌شود. در راستای عرضی با توجه به محدودیت های معماری، تعداد کم و طول ناکافی دهانه‌ها از گزینه دیوار برشی فولادی استفاده می‌شود. تعداد اختصاص یافته به دیوار برشی فولادی به ۴ دهانه محدود می‌شود که در بالاترین طبقات به دو دهانه کاهش می‌یابد.

استفاده از دیوار برشی فولادی با توجه به محدودیت‌های معماری مانند کم بودن تعداد دهانه‌های قابل به کارگیری برای مهاربندی و کم بودن طول این دهانه‌ها مناسب‌ترین راه بهسازی قابل به کارگیری در این ساختمان است. مکانیزم اتلاف انرژی در دیوارهای برشی فولادی تشکیل میدان کششی و جاری شدن جان (همانند تیر ورق های عمیق) است‌.

این طح نیازمند تقویت نسبتاً سنگینی در فونداسیون‌ها‌، ستون‌ها و تیر فوقانی است که قسمت عمده هزینه‌های اجرایی را شامل می‌شود اما با کاهش تعداد دهانه از نظر حجم عملیات اجرایی از جمله تخلیه ساختمان‌، تخریب و اجرای تقویت‌ها از یک سو و کاهش زمان توقف بهره برداری ساختمان از سوی دیگر دارای مزایای عمده‌ای است.


ین کلمات به صورت پیش‌فرض زیر مطلب نمایش داده خواهند شد.

  • بهسازی لرزه ایx
  • بهسازی لرزه ای در گیلان و مازندرانx
  • بهسازی لرزه ای ساختمانx
  • بهسازی لرزه ای سازه هاx
  • بهسازی ساختمانx
  • بهسازی لرزه ای سازه های موجود با اضافه کردن مهاربندهای خارجیx
  • بهسازی لرزه ای مدرسهx

منبع : عمران سافت

۰ نظر موافقین ۰ مخالفین ۰ ۱۸ بهمن ۹۶ ، ۱۹:۰۳
ش.م

سازه‌های مدفون

با توجه به سوابق لرزه خیزی کشور و همچنین نحوه احداث بناها، کشور در سال‌های گذشته و همچنین داشتن پتانسیل بالا در اکثر شهرهای پر جمعیت کشور برای وقوع زلزله، لازم است مسئله مصون سازی جامعه از آثار زلزله به طور جدی مورد توجه قرار گیرد. نابودی سرمایه‌های ملی و انسانی بر اثر زلزله‌های مخرب، لزوم توجه به مقاوم سازی ابنیه و ساختمان‌های موجود را اجتناب ناپذیر می‌کند. در چند دهه اخیر تحقیقات زیادی در زمینه مهندسی زلزله صورت گرفته است.

‌تأمین ایمنی لرزه‌ای ساختمان‌های موجود باید درالویت برنامه‌های کلان کشور قرار گیرد. از جمله روش‌هایی که در کشورهای مختلف جهت مقابله با تهدیدات ناشی از موج و قدرت تخریبی زلزله‌ها و انفجارات صورت گرفته، به کارگیری سازه‌های بتنی، سازه‌های مرکب، دیوار‌حائل، حفاظ‌های بتنی، سازه‌های مجازی و موارد مشابه است.

سازه‌هایی که با آئین نامه‌های متداول طراحی شده‌اند از لحاظ تأمین امنیت و سلامت جانی عملکرد خوبی دارند اما میزان خسارت وارد بر این سازه‌ها (بخصوص سازه‌هایی مثل بیمارستان و مراکز درمانی که کارآئی آنها با اهمیت است) بالا بوده و از لحاظ اقتصادی تعمیر و مرمت آنها توجیه ندارد. آئین نامه‌های طراحی کنونی سازه‌ها در برابر زلزله عمدتاً با هدف کاهش تلفات جانی ناشی از زلزله تدوین شده‌اند و تجارب حاصل از زلزله‌های اخیر نیز نشان دهنده کارآمدی آنها در زمینه کاهش تلفات ناشی از زلزله است. ولی زلزله‌های بزرگ سال‌های اخیر نشانگر آن است که میزان خسارت‌های سازه‌ای و غیرسازه‌ای در برخی موارد بسیار شدید بوده و خسارات مالی سنگینی را به دنبال داشته است.

‌با توجه به تعداد و گستردگی سازه‌های آسیب پذیر در برابر زلزله در سطح کشور بودجه و زمان بسیار زیادی لازم است تا تمامی این سازه‌ها نوسازی و جایگزین شوند. لذا مقاوم سازی سازه‌های موجود با تدابیری که حداقل هزینه و حجم مصالح و زمان را نیاز داشته باشد، تنها و بهترین راه حل جهت جلوگیری از فجایع و مصیبت‌های آتی است.

سازه‌های مدفون مانند نیروگاه سدها که در تونل قرار دارند، به واسطه آن که یکی از عناصر مهم در شریان‌های حیاتی هستند، باید به گونه‌ای طراحی شوند که در مدت زلزله و بعد از آن هم بتوانند عملکرد خود را داشته باشد. بنابراین دستیابی به روش یا روش‌هایی جهت بهسازی لرزه‌ای سازه‌های مدفون که در برابر زلزله به اندازه کافی مقاوم نیستند، می‌تواند بسیار مهم باشد.

مقاوم سازی سازه‌های مدفون

اصطلاحات و مفاهیم مختلف

اصطلاحات و مفاهیم مختلف در ارتباط با ارتقاء سطح لرزه‌ای و مقاوم سازی ساختمان‌ها به کار برده می‌شوند اما تعاریف واحد و کاملاً مشخصی برای آنها ارائه نشده‌اند.‌

مقاوم سازی

تجدید یا جایگزین کردن عنصری نو در قسمتی از ساختمان موجود جهت بالا بردن ظرفیت سازه‌ای نسبت به ساختمان اصلی به طوری که عملیات انجام شده باعث می‌شود مقاومت و شکلپذیری ساختمان تقویت شده، نسبت به ساختمان اولیه بالا رود.

ترمیم‌

تجدید و یا جایگزین کردن قسمتی نو در ساختمان خسارت دیده و یا رو به زوال رفته، جهت بدست آوردن سطح مقاومت و یا شکل پذیری برای ساختمان قبل از خسارت دیدگی.

دوباره مدل کردن‌

تجدید و یا جایگزین کردن قسمتی نو درساختمان موجود که صاحب ملک بخواهد کاربری آن را عوض کند.

بهسازی

شامل مقاوم سازی، ترمیم و دوباره مدل کردن می‌شود.

توان بخشی

تجدید و یا جایگزین کردن قسمتی نو در ساختمان خسارت دیده جهت دستیابی به همان سطح بهره برداری که ساختمان قبل از خسارت دارا بوده است.

بازسازی

بازسازی ساختمان‌ها در یک منطقه مشخص اکثرا جهت بناهای تاریخی بکار می‌رود که شامل ترمیم و مقاوم سازی می‌شود. به منظور بهبود رفتار لرزه‌ای ساختمان‌ها در برابر نیروهای زلزله لازم است ظرفیت لرزه‌ای ساختمان موجود و ظرفیت لرزه‌ای مورد نیاز برای تقویت تخمین زده شود و چگونگی رسیدن به ظرفیت مورد نیازمشخص شود.

هدف از مقاوم سازی ابنیه زیر زمینی

یکی از اساسی‌ترین کارکردهای مقاوم سازی در ساختمان‌های ایمن حفاظت از آن ساختمان در برابر بارهای احتمالی است. مواردی چون شدت آسیب پذیری، هزینه مالی و مقدار عملیات مورد نیاز شاخصه‌های اصلی در مقاوم سازی ابنیه بخصوص ابنیه زیر زمینی است، جهت دستیابی به این شاخصه‌ها، می‌توان هر کدام را به شرح زیر بسط داد.

‌آسیب پذیری

آسیب پذیری عبارت است از مقدار آسیب پذیری سازه در برابر زلزله و اهمیت آن سازه. به عنوان مثال هرچه ساختمانی مهمتر یا آسیب پذیرتر باشد، نیاز به ایمن سازی مؤثر تر،بیشتر احساس می‌شود.

‌هزینه مالی

صرف هزینه مالی تا جایی معقول و بهینه است که ارزش هزینه صرف شده برای حراست ساختمان با توجه به تجهیزات موجود در آن و کارکرد آن ساختمان در مواقع مختلف برابر باشد.

‌مقدار عملیات مورد نیاز

در بعضی مواقع هزینه از اهمیت کمتری برخوردار بوده و امکان انجام مقاوم سازی به دلایلی نظیر زمانبری زیاد و عدم وجود امکانات غیر ممکن است. لذا با توجه به قابل اجراشدن مقاوم سازی، طرح تهیه شود.

روش‌های متداول مقاوم سازی سازه‌های مدفون

‌طرح‌های مختلفی برای مقاوم سازی سازه‌های مدفون در مقابله با زلزله وجود دارد. البته هر یک دارای خصوصیات و روش‌های خاص خود هستند. ولی یکی از مشکلات این طرح‌ها، هزینه‌های سنگین آنها است. که اغلب با افزایش عمق همراه است. از آنجایی که امواج زلزله بخش و کاهش انرژی است. لذا افزایش عمق، تا حدودی ایمنی را افزایش می‌دهد. در مقابل استفاده از این راه، باعث کاهش بهره برداری سازه در شرایط بهره برداری و افزایش هزینه ساخت می‌شود. از سوی دیگر لایه‌های مختلف زمین، بخشی از امواج زلزله را که به فرکانس طبیعی لایه نزدیکتر است تقویت می‌کند و عدم توجه به این مطلب در هنگام طراحی، خسارت‌های جبران‌ناپذیری را به همراه دارد. به دلایل اقتصادی عموماً تدابیرفوق الذکر در سازه‌های مدفون، به طور کامل لحاظ نمی‌شود. ‌

‌اثر موج در خاک

خواص امواج زلزله با عبور از محیط‌های مختلف دگرگون میشود. فرکانس‌های بالا به سرعت میرا شده و فرکانس‌های پایین تا مسافت‌های دورتر پایدار می‌مانند. از سوی دیگر لایه‌های مختلف زمین بخش‌هایی از طیف فرکانس را که به فرکانس طبیعی لایه نزدیکتر است تقویت می‌کنند. در صورتی که لایه‌هایی در زمین وجود داشته باشند که فرکانس آنها از طیف اصلی فرکانس لرزه، دورتر باشد موج تقویت نشده و مستهلک می‌شود. لذا جنس خاک پی نقش مهمی بر مستهلک نمودن موج و انرژی و در ضمن پایداری سازه در اثر نیروهای استاتیکی و دینامیکی دارد.

استهلاک موج

افزایش ضریب استهلاک موجب کاهش نیروهای زلزله در زمین می‌شود.

ضریب استهلاک در مصالح خاکی متفاوت است و می‌تواند بین ۱۰ تا ۲۰ متغیر باشد که ناشی از عوامل مختلفی است.

  1. ‌رفتار پسماند
  2. ‌اصطکاک ناشی بین ۲ سطح سازه و خاک
  3. ‌لزجت داخلی ذرات – اصطکاک – تخلخل بین ذرات ومقاومت خارجی آب در ذرات خاک

در خاک‌های دانه‌ای استهلاک ناشی از اصطکاک، از عوامل دیگر مهمتر است. این مطلب هم قابل ذکر است که عبور موج در محیط متخلخل همراه با توزیع انرژی است.

بار گذاری زلزله بر سازه

روش‌های مقاوم سازی در برابر انفجار، نسبت به زلزله، کم خرج‌تر و امکان پذیر‌تر است اغلب از ارتعاشات انفجاری جهت بررسی خواص زمین لرزه‌ای سازه‌های مختلف بهره گیری می‌شود‌. رفتار یک ماده منفجره بر یک سازه، عموماً با کمک ۲ عنصر مهم مطالعه می‌شود.

  1. ‌اندازه قدرت انفجار، که با TNT سنجیده می‌شود.
  2. فاصله منبع انفجار تا هدف

فشار امواج حاصل از انفجار پس از گذشت از بازه زمانی انفجار به صورت تصاعدی کاهش می‌یابد. طبق آزمایشات انجام شده، این فشار مثبت حتی می‌تواند به فشار منفی تبدیل شود که در این صورت تشدید خرابی را به همراه خواهد داشت. زیرا در اثر این فشارهای منفی سازه، در معرض نیروهایی در جهت مخالف قرار می‌گیرد. با رخ دادن انفجار، (با قدرت معین بر حسب ‌TNT)‌، در سطح زمین یا نزدیک به آن، حداکثر فشار حاصله از این انفجار کروی به صورت تابعی از فاصله نسبت به منبع گسترش دهنده نزول می‌کند. وقتی که موج زلزله یا انفجار به سازه می‌رسد، سازه در معرض فشار بازتاب و نتایج بارگذاری، که ممکن است بسیار پیچیده باشد، قرار می‌گیرد. هر چند که این بارگذاری بسیار پیچیده است ولی باز هم موج انفجار بر اساس بارگذاری قابل محاسبه است. موج زلزله که قبل از برخورد به صورت فشاری بوده، پس از برخورد و انعکاس تبدیل به موج کششی می‌شود. بیشترین آسیب به ساختمان در اثر این موج کشش است.

اثر موج زلزله بر بتن

امواج زلزله در قسمت‌های مختلف دیواره سازه منتشر شده و پس از رسیده به سطوح آزاد دیواره‌ها منعکس‌ و پراکنده می‌شوند. این امواج که قبل از برخورد به صورت فشاری بودند، پس از برخورد و انعکاس تبدیل به موج کششی می‌شوند. انعکاس موج تنش در بدنه سازه‌های بتن آرمه باعث به وجود آمدن پدیده‌ای به نام قلوه کنشدگی میشود که به عنوان یکی از عوامل مخرب سازه‌های امن ساخته شده از بتن به شمار می‌رود. برای مقابله با این پدیده چند روش مورد استفاده قرار می‌گیرند.

راهکار پیشنهادی برای سازهای مدفون در برابر زلزله

در هنگام ارائه راهکارهای جدید برای مقاوم سازی زلزله‌ای و یا انفجاری سازه، باید موارد متعددی در نظر گرفت که اهمیت آن سازه در جای نخست قرار دارد. یکی از سازه‌های بسیار مهم در هر کشور مراکز زیر زمینی نظامی و یا غیر نظامی است که اصطلاحاً به آن سازه‌های امن گفته می‌شود. هر چند هزینه مصرفی در جهت مقاوم سازی این سازه‌ ها ممکن است بسیار زیاد باشد، ولی با توجه به کاهش خسارت‌های مالی و جانی که در صورت بروز حادثه رخ می‌دهد، قابل توجیه است.

لذا با توجه به مطالب بالا به کار بردن روش‌های نوین مقاوم سازی جهت ایمنی و کم هزینه شدن مقاوم سازی سازه‌های امن ضرورت دارد. برای مقاوم سازی این گونه سازه‌ها، نیازمند به راهکار‌های بهینه است.

مواد کامپوزیت پلیمری (FRP )

این مواد بطور کلی ترکیبی از دو ماده الیاف و رزین هستند که در آن الیاف عامل ایجاد مقاومت و رزین عامل ایجاد پیوستگی و یکپارچگی الیاف و همچنین عامل توزیع و انتقال یکنواخت بار به الیاف است. وظیفه محافظت از الیاف و اتصال آنها به سطح و انتقال نیرو از سازه به الیاف نیز بر عهده رزین بوده در حالی که وقتی الیاف با رزین مورد استفاده قرار می‌گیرند، مقاومت کششی آن به ۲ الی ۳ برابر مقاومت کششی فولاد کاهش می‌یابد. این مواد تنوع بسیار زیادی دارند ولی در زیر چند مورد از آنها اشاره می‌شود.

  1. مواد کامپوزیت پلیمری با الیاف کربن (CFRP)
  2. مواد کامپوزیت پلیمری با الیاف آرامید (AFRP)
  3. مواد کامپوزیت پلیمری با الیاف شیشه (GFRP) رایج ترین نوع است ولی در برابر مواد قلیایی آسیب پذیر است. (E-Glass)
  4. الیاف شیشه مقاوم در برابر قلیایی ها AR-Glass

دلایل استفاده از این گونه مواد‌

  • ‌قابلیت افزایش مقاومت در جهت دلخواه
  • ‌مقاوم در برابر خوردگی و فرسودگی
  • ‌وزن بسیار کم (برای تقویت دیوار برشی، وزن دیوار اضافه نخواهد شد و در نتیجه نیازی به تقویت پی نیست)
  • ‌مقاوم در برابر بارهای متناوب، دینامیکی و تکراری (استفاده در پل‌ها به دلیل خستگی ناپذیر بودن)
  • ‌افزایش رفتار شکل پذیر سازه
  • ‌سرعت به کارگیری و نصب بالا
  • ‌رفتار تقریباً یکسان از لحاظ انبساط و انقباض با بتن
  • ‌قابلیت حمل آسان
  • ‌صرفه اقتصادی (علیرغم بالاتر بودن قیمت واحد خود مواد کامپوزیت نسبت به مصالح دیگر، به دلایل زیر استفاده از این مواد در مقاوم سازی به صرفه است)
  • ‌وزن کم و عدم نیاز به تقویت پی‌ها
  • ‌ضخامت تمام شده کم و عدم کاهش زیر بنای مفید ساختمان
  • ‌سرعت نصب بالا و عدم نیاز به ماشین آلات سنگین و پر صدا
  • ‌مقاوم در برابر خوردگی و عدم وجود هزینه نگهداری

میراگر اصطکاکی‌

این میراگر بعنوان قسمتی از سیستم مهاربند جانبی، شامل صفحات فولادی است که به یکدیگر بولت شده و عموماً در قسمت وسط مهارربند X شکل قرار می‌گیرد. سیستمی نظیر این میراگرها وجود دارد که می‌توان آن را به وسیله اتصالاتی در محل اتصال تیر – ستون تعبیه نمود. این میراگرها انرژی زلزله را بواسطه لغزش صفحات فولادی بر روی یکدیگر به انرژی گرمایی تبدیل می‌نماید. ‌

در چند مرحله انرژی موج زلزله جذب می‌شود، به صورتی که حداقل انرژی موج به بتن نهایی می‌رسد، سپس توسط نوع جدیدی از بتن و همین طور با طرز قرار گرفتن خاص آرماتورها و استفاده از میراگرها و اثر زلزله را خنثی می‌کند و آسیب‌ها را به حداقل می‌رساند. همانطور که گفته شد می‌توان این روش را به چند مرحله تقسیم کرد.

‌مرحله اول ( جذب انرژی)‌

در این مرحله ابتدا، موج زلزله را به طور نسبی بوسیله لایه‌های مصنوعی خاک مستهلک نموده، به طوری که انرژی ناشی از موج لرزه‌ای صرف جابجایی این لایه‌ها می‌شود. برای این منظور و همینطور افزایش رفتار میرایی در لایه‌های زمین، از مصالح ارتجاعی مقاوم (PVC متراکم) در خاک‌هایی که تخلخل بالا دارند استفاده می‌شود. سپس از میکرو شمع استفاده می‌شود.

در انتهای این مرحله، از نوعی محیط ژله‌ای (یا پلاسما) استفاده می‌کنیم تا بار وارده در سطح وسیع‌تری پخش شده و نتیجتاً بار زلزله و یا انفجار به طور مستقیم نمی‌تواند دیواره بتنی را تخریب نماید. دراین صورت اثرات مخرب ایجاد شده بر روی سازه به حداقل می‌رسد. مقدار بار بحرانی در هنگام وقوع زلزله در زمان بسیار کوتاه اتفاق می‌افتد. لذا می‌توان با کاهش این اثر بخشی در بازه زمانی مورد نظر و گسترش آن در بازه زمانی بزرگتر، قدرت و شدت بار وارده را کاهش داده و به تبع آن مقدار تخریب را کاهش دهیم.

مرحله دوم

در این مرحله ترکیبی از مصالح FRP با بتن جدید (این نوع بتن در مرکز تحقیقات مهندسی جهاد آذربایجان شرقی طراحی شده که اثر ویران بخش زلزله بر بتن که در بخش اثر زلزله بر بتن ذکر شد به حداقل می‌رساند) اثر زلزله را به حداقل ممکن می‌رساند.

مرحله سوم

در این مرحله با استفاده از میراگرهای اصطکاکی و روش آرماتوربندی پیوسته، حداقل فاصله بین آرماتور‌ها اثر زلزله را خنثی می‌کند. برای احتیاط می‌توان از شمع‌ها که به صورت مایل به سنگ بستر سخت وصل هستند استفاده کرد. عملکرد شمع‌های مایل به گونه‌ای ست که باعث افزایش مقاومت دیواره‌های قائم و تحکیم دیواره بتنی میشوند و لذا از ریزش دیواره به داخل و آسیب دیدن تجهیزات جلوگیری می نمایند. از طرفی با توجه به کنترل توده خاک و تثبیت آن، باعث افزایش مقاومت خاک در اطراف سازه میشوند. بدین صورت انرژی دینامیکی را مستهلک می‌کنند. لذا استفاده از این روش در مقاوم سازی سازه‌های مختلف بسیار مناسب است. نکته قابل ذکر این است که به نظر می‌آید این روش خیلی پر هزینه است.

سپر دفاعی تحتانی

سپر دفاعی تحتانی باعث افزایش کارائی گالری در تحمل موج و بار وارده ناشی از انفجار و زلزله می‌شود. ‌بکارگیری سپر تحتانی از سازه در برابر واژگونی و همچنین در برابر افت‌های موضعی ناشی از اعمال بار و در نهایت از آسیب دیدیگی سازه از قسمت پائین جلوگیری به عمل می‌آورد.

‌شمع‌های مایل (ریز شمع)

عملکرد شمع‌های مایل به گونه است که با دو کارکرد باعث مقاوم سازی دیواره‌های قائم و تحکیم دیواره بتنی می‌‌شوند و لذا از ریزش دیواره به داخل و آسیب دیدن تجهیزات جلوگیری می‌نمایند و باعث افزایش مقاومت خاک در اطراف سازه می‌شوند، چون به خوبی باعث تثبیت خاک می‌شود.

با توجه به مطالب گفته شده به کارگیری روش‌های یاد شده ضمن افزایش باربری سازه، از بروز خسارات به تجهیزات داخل آن جلوگیری کرده و امکان استفاده از سازه امن را بعد از زلزله و یا انفجار فراهم می‌سازد.

  1. ‌امواج زلزله هنگام عبور از لایه‌‌های مختلف زمین در حال انعکاس، شکسته و جذب می‌شوند. ‌
  2. ‌سازه‌های مقاوم شده انفجاری عموماً در مقابل زلزله نیز باربری مناسبی دارند.
  3. ‌جهت توزیع و جذب موج در زمین، ژئومبین به صورت لایه‌های بسیار نازک با ضخامت طراحی در لایه‌های خاک استفاده می‌شود.
  4. ‌با توجه به مشابه بودن بارگذاری زلزله و انفجار بهتر است در سازه‌های مختلف این دو مقاوم سازی بصورت همزمان صورت پذیرد.



منبع : عمران سافت

این کلمات به صورت پیش‌فرض زیر مطلب نمایش داده خواهند شد.

  • مقاوم سازی در گیلانx
  • مقاوم سازی در مازندرانx
  • مقاوم سازی با الیاف Frpx
  • مقاوم سازی و کاشت بولت در مازندرانx
  • مقاوم سازی سازه فولادیx
  • مقاوم سازی در لاهیجانx
  • مقاوم سازی سازه بتنی در مازندرانx
  • مقاوم سازی سازه بتنیx
این سایت نمی‌تواند بیش از ۵۰۰ کلمه‌ی کلیدی داشته باشد
۰ نظر موافقین ۱ مخالفین ۰ ۱۸ بهمن ۹۶ ، ۱۹:۰۱
ش.م

طراحی اتصالات تیر به ستون

اتصالات تیر به ستون در قاب‌های خمشی

اتصالات خمشی تیر به ستون مختلفی مورد استفاده قرار می‌گیرد. چون عمده لنگر خمشی تیر در بال‌های آن توسعه می‌یابد، بنابراین برای فراهم نمودن یک اتصال خمشی، باید به نحو مقتضی بال‌های تیر به ستون متصل شوند. اتصال بال‌های تیر به ستون از طرق مختلف نظیر اتصال مستقیم و با استفاده از جوش نفوذی و یا پیچ، به صورت غیرمستقیم و توسط ورق‌های روسری و زیرسری و یا توسط ورق فوقانی و نشیمن انجام گیرد.

اتصال مستقیم بال‌های تیر به ستون به دلیل نیاز به پخ‌زنی (کونیک نمودن) بال برای جوش شیاری چندان متداول نیست و استفاده از ورق‌های انتهایی، ورق‌های فوقانی و تحتانی و یا نبشی نشیمن متداولتر است. اجرای اتصال خمشی تیر به جان ستون مشکلتر از ایجاد اتصال به بال ستون است. بنابراین برای اجرای مناسب اتصال تیر به جان ستون می‌توان از یک نیمرخ سپری با طول حدود ۲ برابر ارتفاع تیر که بال‌ها و جان آن‌ که برای قرار گرفتن مناسب در فاصله بالها و جان ستون بریده شده است، استفاده نمود.

جان ستون توسط جوش گوشه و به بال ستون توسط جوش شیاری انجام می‌گیرد. راهکار دیگر اتصال تیر به جان ستون، استفاده از ورق‌های فوقانی و نشیمن تقویت شده است، که در این اتصال جان ستون به شدت در معرض تنش‌های خمش و موضعی قرار می‌گیرد. بنابراین استفاده از مقطع سپری مناسب‌تر است.

اتصالات تیر به ستون باید بگونه‌ای طراحی شوند که شرایط ایجاد مفصل پلاستیک در داخل تیر و خارج ازاجزای اتصال را فراهم نمایند. در اتصالات جوشی تیر به ستون، اتصال بال تیر یا ورق پوششی آن به وجه ستون یا به ورق پیشانی (فلنج) که به ستون پیچ می‌شود باید منحصراً از نوع نفوذی کامل باشد. برای اتصال جان تیر یا ورق اتصال جان، به بال ستون یا ورق انتهایی، استفاده از جوش نفوذی نسبی یا جوش گوشه مجاز است. رفتار اتصالات تیر به ستون در قاب‌های خمشی به عنوان اعضای کنترل شونده توسط نیرو در نظر گرفته می‌شوند.

طراحی اتصالات تیر به ستون

انواع اتصالات تیر به ستون‌

انواع اتصالات تیر به ستون‌ها به صورت ذیل طبقه می‌شوند.

  1. ‌اتصالات ساده تیر به ستون
  2. ‌اتصالات خمشی کاملاً گیردار تیر به ستون
  3. ‌اتصالات خمشی نیمه گیردار تیر به ستون

معیار طبقه‌بندی میزان گیرداری اتصالات بر اساس میزان نسبت لنگر خمشی، تغییر شکل‌ها و دوران‌های ارتجاعی و غیرارتجاعی اتصالات در قاب‌های خمشی ویژه و متوسط و نیز مقاومت و شکلپذیری اتصال بر اساس محدوده عملکرد ارتجاعی و غیرارتجاعی آنها طبق پارامترهای ذیل طبقه بندی می‌شود.

  1. ‌میزان انتقال لنگر
  2. ‌سختی اتصالات
  3. شکلپذیری اتصالات

انواع اتصالات خمشی گیردار از پیش تایید شده تیر به ستون

صورتی که اتصالات معرفی شده در این بخش، ضوابط و محدودیت‌های بیان شده را تامین نمایند، به عنوان اتصالات خمشی گیردار از پیش تایید شده تیر به ستون و در قاب‌های خمشی ویژه (SMF) و متوسط (IMF) قابل استفاده خواهند بود.

  1. اتصال پیچی با ورق‌های روسری و زیرسری (BFP)
  2. اتصال مستقیم تیر با مقطع کاهش یافته (RBS)
  3. اتصال از طریق ورق انتهایی با سخت کننده ‌با ورق لچکی (BSEEP) و بدون سخت کننده (بدون ورق لچکی ) (BUEEP) اتصالات فلنجی تیر به ستون‌
  4. اتصال مستقیم تقویت نشده جوشی (WUF-W)
  5. اتصال جوشی با ورق‌های روسری و زیرسری (WFP)
  6. اتصال تیر به ستون با اتصال لچکی پیچ شده‌ (KBB)
  7. اتصال تیر به ستون از نوع ConXL

رعایت ضوابط و محدودیت‌های بیان شده برای اتصالات معرفی شده باعث تامین گیرداری (FR) می‌شود.

ویژگی‌ها و مشخصات اتصالات خمشی گیردار از پیش تایید شده

هنگامی که مقادیر مقاومت‌های موجود بر اساس ضوابط آیین‌نام‌های مشخص می‌شود، لازم است برای در نظر گرفتن اثرات ناشی از عوامل مختلف نظیر کیفیت مصالح و ساخت، تجهیزات کارگاهی و رفتار مورد انتظار اتصالات پیش تایید شده و در جهت محافظه کارانه و تامین قابلیت اعتماد لازم در این اتصالات از ضرایب کاهش مقاومت استفاده شود. بنابراین برای حالات حدی شکلپذیر از ضریب مقاومت φd=۱ و برای حالات حدی غیرشکلپذیر از ضریب مقاومت φn=۰/۹ در محاسبه ظرفیت و مقاومت اعضای مختلف اتصالات تیر به ستون استفاده شده است.

ناحیه حفاظت شده

مطابق تعریف و ضوابط مبحث دهم مقررات ملی ساختمان، ناحیه حفاظت شده در یک عضو از سازه ناحیه‌ای شکلپذیر از عضو است که انتظار می‌رود در آن مفصل پلاستیک تشکیل شود. به دلیل اهمیت این ناحیه و رفتار حساس آن در حرکات رفت و برگشتی سازه، این ناحیه باید عاری از هر گونه عملیاتی که موجب دگرگونی عملکرد عضو در این ناحیه می‌شود، باشد. ناحیه حفاظت شده در دو انتهای تیر، فاصله بین بر ستون تا نصف عمق تیر از محل تشکیل مفصل پلاستیک به سمت داخل دهانه در نظر گرفته می‌شود. این ناحیه بجز در مواردی که مشخص شده است باید کلیه الزامات لرزه‌ای مربوط به اتصالات و مقاطع را تامین نماید.

در اتصالات گیردار خمشی تیر به ستون از پیش تایید شده، ناحیه حفاظت شده برای هر نوع از این اتصالات به طور جداگانه قابل تعریف است. نظر به اهمیت ناحیه‌ی حفاظت شده‌ی اعضا در تامین شکلپذیری مورد نیاز، الزامات عمومی که باید در اجزای ناحیه حفاظت شده در نظر گرفته شود به شرح ذیل است.

  1. بکار بردن وصله مستقیم یا غیرمستقیم جوشی یا پیچی نیمرخ‌ها یا ورق‌های تشکیل دهنده‌ی عضو در ناحیه حفاظت شده ممنوع است.
  2. هر گونه ناپیوستگی ناشی از عملیات ساخت و نصب مانند جوش‌های موضعی، وسایل کمکی برای نصب،ناصافی‌های ناشی از برش‌های حرارتی در ناحیه حفاظت شده ممنوع بوده و در صورت وجود باید به نحو مناسبی برطرف شده و تعمیر شود.
  3. خال جوش کردن ورق‌های ذوزنقه‌ای تیرهای مختلط و نیز جوش برشگیرهای از نوع گل میخ در تیرهای مختلط در ناحیه حفاظت شده، در صورت تامین ضوابط (‌اتصالات از پیش تایید شده) مجاز است.

ورق‌های پرکننده انگشتی

این ورق‌ها به منظور همراستا نمودن (هم محور نمودن) و سهولت در اجرای اجزای سازه‌ای اتصالات بکار برده ‌می‌شوند. ضوابط مربوط به کاربرد این ورق‌ها در اتصالات جوشی و پیچی در مبحث ۱۰ ملی ساختمان ارائه شده است. در صورت کاربرد مناسب ورق‌های پرکننده انگشتی تاثیر سازه‌ای بر روی پیش تنیدگی و آزادشدگی پیچ‌ها و عملکرد اتصالات ندارند. در صورت کاربرد کامل این ورق‌های پرکننده، تکیه‌گاهی به اندازه ۷۵٪ قطر پیچ در مقایسه با سطح کاهش یافته‌ی دارای پیچ در وسط آن و در امتداد طولی سوراخ لوبیایی تامین می‌شود. به عبارت دیگر نقش ورق‌های پرکننده انگشتی در هر دو طرف عضو و احاطه آنها توسط مصالح اجزای اتصالات به عنوان رابط بین سوراخ‌های انگشتانه هستند.

کاربرد این ورق‌ها در هر دو نوع از اتصالات گیردار از پیش تایید شده فلنجی (BSEEP & BUEEP) و اتصال گیردار پیچی به کمک ورق‌های روسری و زیرسری (BFP) مجاز است.

اتصال گیردار پیچی تیر به ستون از طریق ورق روسری و زیرسری (BFP)

اتصالات خمشی گیردار تیر به ستون با ورق فوقانی و تحتانی پیچ شده به بال تیر از طریق اتصال جوشی بین ورق‌های پوششی یا ورق‌های فوقانی و تحتانی به ستون و نیز اتصال پیچی بین بال تیر و ورق‌های فوقانی و تحتانی برقرار می‌شود و کلیه اتصالات از نوع اصطکاکی هستند. برای این نوع اتصال ورق‌های فوقانی و تحتانی باید یکسان باشند، اتصال بین ورق‌های فوقانی و تحتانی به بال ستون از طریق جوش‌های شیاری با نفوذ کامل CJP و اتصال این ورق‌ها به بال تیرها از طریق پیچ‌های پر مقاومت ایجاد شده باشد. اتصال جان تیر به بال ستون از طریق یک ورق به صورت نوار برشی و با جوش و پیچ برقرار می‌شود.

شروع تسلیم و تشکیل مفصل پلاستیک در تیر و در ناحیه مجاور انتهای ورق‌های فوقانی و تحتانی یا ورق‌های پوششی رخ می‌دهد. با رعایت محدودیت‌های ضوابط لرزه‌ای، این نوع اتصالات شرایط لازم را برای استفاده در قاب‌های خمشی ویژه و متوسط را دارا هستند.

بایستی توجه نمود که کاربرد این اتصالات در قاب‌های خمشی ویژه با دال بتنی سازه‌ای در صورتی امکان پذیر است که امکان تغییر شکل و دوران در اتصالات تیر به ستون از طریق ایجاد فاصله بین دال بتنی و ستون، به اندازه حداقل ۲۵ میلیمتر از دو طرف بال ستون و از مصالح شکلپذیر در فضای بین بال ستون‌ها و بتن سازه‌ای دال مجاز باشد‌.

ضوابط و محدودیت‌های اتصال BFP

در این نوع اتصال، طبق ضوابط برای تیرها، استفاده از مقاطع نورد شده IPE یا مقاطع ساخته شده با ورق‌های فولادی برای مقاطع I شکل مجاز است. در ستون‌ها نیز با رعایت ضوابط مبحث دهم مقررات ملی ساختمان می‌توان از نیمرخ نورد شده یا مقاطع ساخته شده نیز استفاده نمود.

  • اتصال تیر به بال ستون بواسطه ورق‌های فوقانی و تحتانی یا ورق‌های پوششی باید از طریق جوش‌های شیاری با نفوذ کامل برقرار شود.
  • حداکثر ارتفاع تیرها برای مقاطع نورد شده ۱۰۰ سانتیمتر و برای مقاطع ساخته شده از ورق به ارتفاع مقطع نوردشده معادل محدود شده است. حداکثر ارتفاع مقطع نورد شده ستون‌ها هنگامی که از دال سازه‌ای بتنی استفاده میش‌ود به مقدار ۱۰۰ سانتیمتر محدود شده است. در صورت عدم استفاده از دال سازه‌ای بتنی حداکثر ارتفاع به مقدار ۴۰ سانتیمتر محدود شود. ستون‌ها با مقطع صلیبی نباید عرض یا عمق بیشتر از مقادیر مجاز مقاطع نورد شده را داشته باشند. مقاطع ستون‌های جعبه‌ای بال پهن در صورت مشارکت در عملکرد لرزه‌ای قاب‌های خمشی در دو راستای متعامد نباید عرض یا عمق بیشتر از ۷۰ سانتیمتر را داشته باشند.
  • به منظور تامین شکلپذیری کافی در قاب‌های خمشی ویژه SMF حداکثر وزن واحد طول تیرها به مقدار ۲۵۰ کیلوگرم بر متر محدود شده است ولی هیچ گونه محدودیتی برای وزن واحد طول ستون‌ها وجود ندارد.
  • به منظور تامین شکلپذیری کافی در قاب‌های خمشی ویژه SMF حداکثر ضخامت بال تیر به مقدار ۳۰ میلیمتر محدود شده است.
  • به منظور تامین تقاضای دوران اتصالات در محدوده غیرخطی برای قاب‌های خمشی ویژه SMF حداقل نسبت فاصله خال صدهانه به عمق تیر در قاب‌های خمشی ویژه برابر ۹ و در قاب‌های خمشی متوسط به مقدار ۷ محدود شده است.
  • نسبت عرض به ضخامت در بال‌ها و جان تیرها و ستون‌ها بایستی مطابق الزامات ضوابط لرزه‌ای مبحث دهم مقررات ملی ساختمان باشد.

جزئیات اتصالات

مشخصات مصالح ورق‌ها

کلیه ورق‌های اتصالات باید مطابق یکی از مشخصات استانداردهای مرسوم و معتبر موجود باشند.

جوش ورق بال تیر

ورق‌های فوقانی و تحتانی بال تیرها باید از طریق جوش شیاری با نفوذ کامل CJP و با در نظر گرفتن نیروهای لرزه‌ای مورد نیاز بحرانی به بال ستون متصل شوند. جوش‌های نفوذی فوقانی و تحتانی ورق نباید به یکدیگر متصل شوند. همچنین اگر در اتصال تیر به ستون از ورق پشت بند برای جوشکاری استفاده شود آنگاه باید بعد از جوشکاری این ورق برداشته شود. به منظور دسترسی به جوش بی عیب و بعد جوش مناسب ناحیه زیر پاس ریشه جوش باید تمیزکاری شود.

اتصالات ورق برشی جان تیر

اتصال ورق برشی به بال ستون بایستی از طریق جوش انجام گیرد. اتصال هر ورق برش به بال ستون باید شامل جوش‌های شیاری با نفوذ کامل CJP، جوش‌های دو طرفه نفوذی نسبی PJP یا جوش‌های گوشه دو طرفه باشد.

پیچ‌های اتصالات

آرایش پیچ‌ها به طور متقارن و حول محورهای تیر قرار گیرد و تعداد آنها در صفحات بال اتصالات به دو پیچ درهر ردیف محدود شود. طول مجموعه پیچ‌ها نباید بیش از عمق تیر باشد و از سوراخ‌های استاندارد در بال تیر وورق بال‌ها استفاده شود. سوراخ پیچ‌ها در بال تیرها و در ورق‌های بال باید از طریق دستگاه سوراخکاری و دستگاه مته کاری ایجاد شوند. استفاده از سوراخ‌های منگنه‌ای (پانچ) مجاز نیست.

محدودیت‌ها و الزامات اتصال تیر با مقطع کاهش یافته RBS

تیرها و ستون‌ها بایستی از نیمرخ نورد شده یا مقاطع ساخته شده از ورق طبق ضوابط ارائه شده برای مشخصات مصالح باشند.

اتصال تیر به ستون از طریق اتصال تیر به بال ستون انجام گیرد.

حداکثر ارتفاع تیرها و ستون‌ها برای مقاطع نورد شده ۱۰۰ سانتیمتر و برای مقاطع ساخته شده از ورق به ارتفاع مقطع معادل نورد شده محدود شده است. ابعاد عرض و ضخامت بال ستون‌ها با مقطع صلیبی نباید بیشتر از مقادیر مجاز آن در مقاطع نورد شده معادل باشند. مقاطع ستون‌های جعبه‌ای بال پهن در صورت مشارکت در عملکرد لرزه‌ای قاب‌های خمشی در دو راستای متعامد نباید عرض یا عمق بیشتر از ۷۰ سانتیمتری را داشته باشند‌.

حداکثر ارتفاع مقطع نورد شده ستون‌ها هنگامی که از دال سازه‌ای بتنی استفاده می‌شود به مقدار ۱۰۰ سانتیمتر محدود شده است. در صورت عدم استفاده از دال سازه‌ای بتنی حداکثر ارتفاع به مقدار ۴۰ سانتیمتر محدود شود.

برای تیرها حداکثر وزن واحد طول به مقدار ۴۵۰ کیلوگرم بر متر محدود شده است ولی هیچگونه محدودیتی برای وزن واحد طول ستون‌ها وجود ندارد.

حداکثر ضخامت بال اعضا به مقدار ۵۰ میلیمتر محدود شده است. حداقل نسبت فاصله خال صد هانه به عمق تیر در قاب‌های خمشی ویژه برابر ۷ و در قاب‌های خمشی متوسط به مقدار ۵ محدود شده است.

نسبت عرض به ضخامت در با‌ل‌ها و جان تیرها و ستون‌ها بایستی مطابق الزامات ضوابط لرزه‌ای مبحث دهم مقررات ملی ساختمان باشد. برای اینکه بارهای ثقلی موقعیت مفصل پلاستیک را به فاصله قابل ملاحظه‌ای از مرکز مقطع کاهش یافته تیر انتقال ندهند، اندازه عرض بال در محاسبات مربوط به نسبت عرض به ضخامت بال باید بیشتر از عرض بال در فاصله دو سوم از مرکز مقطع کاهش یافته باشد.

مهاربندی جانبی تیرها ضوابط لرزه‌ای مبحث دهم مقررات ملی ساختمان تامین شود.

مهاربندی جانبی الحاقی باید طبق ضوابط لرزه‌ای مجاور مقطع کاهش یافته و در مجاورت مفاصل پلاستیک انجام گیرد.

در صورت استفاده از مهاربندی جانبی الحاقی، اجزای تشکیل دهنده آن در تیر نباید در فاصله‌ای بیشتر از d/2 (نصف عمق تیر) از انتهای دورترین موقعیت مقطع کاهش یافته تیر نسبت به بر ستون قرار داشته باشند. هیچ کدام از اجزای مهاربندی جانبی نباید بر روی تیر در ناحیه بین بر ستون تا انتهای دورترین موقعیت مقطع کاهش یافته نسبت به بر ستون قرار داشته باشند. استفاده از مهارجانبی الحاقی باعث افزایش مقاومت مورد انتظار تیر میشود.

صورت استفاده از مهاربند جانبی الحاقی، عضو مهاری نباید به مقطع کاهش یافته (‌ناحیه حفاظت شده) متصل باشد. اعضای مهاربندی جانبی الحاقی در ناحیه‌ای از اتصال که در آن انتظار وقوع تغییر شکل‌های جانبی و دورانی بر اساس ضوابط طراحی اتصال RBS پیش بینی شده است ممکن است شروع گسیختگی‌های زیادی را در این ناحیه تحمل نماید. به این ترتیب در صورت تامین مهاربندی جانبی الحاقی، بایستی جزئیات اجرایی آن در ناحیه بین بر ستون تا دورترین موقعیت مقطع کاهش یافته RBS از بر ستون قرار گیرد.

برای سیستم‌های قاب خمشی که در آنها دال بتنی سازه‌ای در بین ناحیه بحرانی (حفاظت شده) با برشگیرهای جوشی با فواصل مرکز به مرکز حداکثر ۳۰۰ میلیمتر استفاده از مهاربندی جانبی بالا و پایین در مقطع کاهش یافته نیاز نیستند.

ناحیه بحرانی (حفاظت شده) باید شامل قسمتی از تیر بین بر ستون و انتهای دورترین موقعیت مقطع کاهشیافته تیر نسبت به بر ستون باشد.

اتصال گیردار مستقیم تقویت نشده جوشی WUF-W

در این نوع اتصال امکان دوران و چرخش غیرالاستیک از طریق تسلیم تیر در ناحیه مجاور برِ ستون وجود دارد.به منظور کنترل گسیختگی اتصال، تمهیداتی در جوش‌های اتصال بالهای تیر به ستون و نیز جوش‌های اتصالجان تیر به بال ستون و نیز شکل سوراخ‌های دسترسی جوش ایجاد شده است. با رعایت ضوابط این مجموعه اتصالات خمشی WUF-W شرایط لازم را برای کاربرد در قاب‌های خمشی ویژه SMF و متوسط IMF را خواهند داشت.

ضوابط و محدودیت‌های اتصال

  • تیرها و ستون‌ها از نیمرخ نورد شده یا مقاطع ساخته شده از ورق طبق ضوابط ارائه شده برای مشخصات مصالح باشند.
  • حداکثر ارتفاع تیرها برای مقاطع نورد شده ۱۰۰ سانتیمتر و برای مقاطع ساخته شده از ورق به ارتفاع مقطع نورد شده  معادل محدود شده است.
  • برای تیرها حداکثر وزن واحد طول تیرها به مقدار ۲۵۰ کیلوگرم بر متر محدود شده است ولی هیچگونه محدودیتی برای وزن واحد طول ستون‌ها وجود ندارد.
  • حداکثر ضخامت بال تیر به مقدار ۳۰ میلیمتر محدود شده است و برای ضخامت بال مقاطع ستون‌ها فقطرعایت الزامات موجود در مبحث دهم مقررات ملی ساختمان کافی است.
  • حداقل نسبت فاصله خال صد هانه به عمق تیر در قاب‌های خمشی ویژه برابر ۷ و در قاب‌های خمشی متوسط به نسبت ۵ محدود شده است.
  • نسبت عرض به ضخامت در بال‌ها و جان تیرها و ستون‌ها بایستی مطابق الزامات ضوابط لرزه‌ای مبحث دهم مقررات ملی ساختمان باشد.
  • مهار جانبی تیرها و ستون‌ها مطابق الزامات مبحث دهم مقررات ملی ساختمان و این دستورالعمل تامین شود.

اتصال گیردار جوشی تیر از طریق ورق‌های روسری و زیرسری WFP

کاربرد اتصالات گیردار جوشی به کمک ورق‌های روسری و زیرسری فقط به قاب‌های خمشی وسط محدود می‌شود.

ضوابط و محدودیت‌های اتصال  WFP

  • ضخامت بال تیر به مقدار ۳۰ میلیمتر محدود شده است.
  • نسبت دهانه آزاد تیر به عمق مقطع آن نباید از ۵ کمتر در نظر گرفته شود.
  • در دو انتهای تیر، ناحیه حفاظت شده باید برابر فاصله از بر ستون تا انتهای ورق‌های روسری و زیرسری (هر کدام که بزرگتر است) بعلاوه نصف عمق تیر بعد از آن، در نظر گرفته شود. محل تشکیل مفصل پلاستیک Sh در  روی تیر باید در محل انتهای ورق‌های روسری و زیرسری (هر کدام که بزرگتر است) در نظر گرفته شود.
  • مهار جانبی تیرها بایستی مطابق الزامات مبحث دهم مقررات ملی ساختمان تامین شود. تعبیه مهارجانبی در فاصله بین انتهای ناحیه محافظت شده تا نصف عمق تیر بعد از آن الزامی است. در قاب‌های خمشی با دال بتنی سازه‌ای آنها در صورتی که تیرها در فاصله بین دو ناحیه محافظت شده دارای برشگیرهای مدفون در بتن به فاصله حداکثر ۳۰۰ میلیمتر باشند، تعبیه مهار جانبی در محل‌های مذکور الزامی نیست.
  • عمق مقطع ستون‌های H شکل و صلیبی در قاب‌های خمشی با دال بتنی سازه‌ای و دارای برشگیرهای فولادی مدفون در بتن، نباید از ۹۰۰ میلیمتر و در غیاب دال بتنی سازه‌ای از ۴۰۰ میلیمتر تجاوز نماید. عمق و پهنای ستون‌های قوطی شکل ساخته شده از ورق نباید از ۷۰۰ میلیمتر تجاوز نماید.

منبع : عمران سافت

این کلمات به صورت پیش‌فرض زیر مطلب نمایش داده خواهند شد.

  • نکات مهم مهندسی عمرانx
  • نکات مهم در مهندسی عمرانx
  • نکات اجرایی ساختمانx
  • نکات مهم ساختمانیx
  • نکات مهم نظارتx
  • نکات مهندسی عمرانx
  • نکات مهم اجرایی عمرانx
  • نکاتی که باید در اجرای یک ساختمان در نظر داشته باشیم به شرح زیر استx
  • نکات ایمنی ساختمانx


۰ نظر موافقین ۱ مخالفین ۰ ۱۸ بهمن ۹۶ ، ۱۸:۵۶
ش.م